123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // reference from https://github.com/RangiLyu/nanodet/tree/main/demo_ncnn
- #include "picodet.h"
- #include <benchmark.h>
- #include <iostream>
- inline float fast_exp(float x) {
- union {
- uint32_t i;
- float f;
- } v{};
- v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
- return v.f;
- }
- inline float sigmoid(float x) { return 1.0f / (1.0f + fast_exp(-x)); }
- template <typename _Tp>
- int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
- const _Tp alpha = *std::max_element(src, src + length);
- _Tp denominator{0};
- for (int i = 0; i < length; ++i) {
- dst[i] = fast_exp(src[i] - alpha);
- denominator += dst[i];
- }
- for (int i = 0; i < length; ++i) {
- dst[i] /= denominator;
- }
- return 0;
- }
- bool PicoDet::hasGPU = false;
- PicoDet *PicoDet::detector = nullptr;
- PicoDet::PicoDet(const char *param, const char *bin, int input_width,
- int input_hight, bool useGPU, float score_threshold_ = 0.5,
- float nms_threshold_ = 0.3) {
- this->Net = new ncnn::Net();
- #if NCNN_VULKAN
- this->hasGPU = ncnn::get_gpu_count() > 0;
- #endif
- this->Net->opt.use_vulkan_compute = this->hasGPU && useGPU;
- this->Net->opt.use_fp16_arithmetic = true;
- this->Net->load_param(param);
- this->Net->load_model(bin);
- this->in_w = input_width;
- this->in_h = input_hight;
- this->score_threshold = score_threshold_;
- this->nms_threshold = nms_threshold_;
- }
- PicoDet::~PicoDet() { delete this->Net; }
- void PicoDet::preprocess(cv::Mat &image, ncnn::Mat &in) {
- // cv::resize(image, image, cv::Size(this->in_w, this->in_h), 0.f, 0.f);
- int img_w = image.cols;
- int img_h = image.rows;
- in = ncnn::Mat::from_pixels_resize(image.data, ncnn::Mat::PIXEL_BGR, img_w,
- img_h, this->in_w, this->in_h);
- const float mean_vals[3] = {103.53f, 116.28f, 123.675f};
- const float norm_vals[3] = {0.017429f, 0.017507f, 0.017125f};
- in.substract_mean_normalize(mean_vals, norm_vals);
- }
- int PicoDet::detect(cv::Mat image, std::vector<BoxInfo> &result_list,
- bool has_postprocess) {
- ncnn::Mat input;
- preprocess(image, input);
- auto ex = this->Net->create_extractor();
- ex.set_light_mode(false);
- ex.set_num_threads(4);
- #if NCNN_VULKAN
- ex.set_vulkan_compute(this->hasGPU);
- #endif
- ex.input("image", input); // picodet
- this->image_h = image.rows;
- this->image_w = image.cols;
- std::vector<std::vector<BoxInfo>> results;
- results.resize(this->num_class);
- if (has_postprocess) {
- ncnn::Mat dis_pred;
- ncnn::Mat cls_pred;
- ex.extract(this->nms_heads_info[0].c_str(), dis_pred);
- ex.extract(this->nms_heads_info[1].c_str(), cls_pred);
- std::cout << dis_pred.h << " " << dis_pred.w << std::endl;
- std::cout << cls_pred.h << " " << cls_pred.w << std::endl;
- this->nms_boxes(cls_pred, dis_pred, this->score_threshold, results);
- } else {
- for (const auto &head_info : this->non_postprocess_heads_info) {
- ncnn::Mat dis_pred;
- ncnn::Mat cls_pred;
- ex.extract(head_info.dis_layer.c_str(), dis_pred);
- ex.extract(head_info.cls_layer.c_str(), cls_pred);
- this->decode_infer(cls_pred, dis_pred, head_info.stride,
- this->score_threshold, results);
- }
- }
- for (int i = 0; i < (int)results.size(); i++) {
- this->nms(results[i], this->nms_threshold);
- for (auto box : results[i]) {
- box.x1 = box.x1 / this->in_w * this->image_w;
- box.x2 = box.x2 / this->in_w * this->image_w;
- box.y1 = box.y1 / this->in_h * this->image_h;
- box.y2 = box.y2 / this->in_h * this->image_h;
- result_list.push_back(box);
- }
- }
- return 0;
- }
- void PicoDet::nms_boxes(ncnn::Mat &cls_pred, ncnn::Mat &dis_pred,
- float score_threshold,
- std::vector<std::vector<BoxInfo>> &result_list) {
- BoxInfo bbox;
- int i, j;
- for (i = 0; i < dis_pred.h; i++) {
- bbox.x1 = dis_pred.row(i)[0];
- bbox.y1 = dis_pred.row(i)[1];
- bbox.x2 = dis_pred.row(i)[2];
- bbox.y2 = dis_pred.row(i)[3];
- const float *scores = cls_pred.row(i);
- float score = 0;
- int cur_label = 0;
- for (int label = 0; label < this->num_class; label++) {
- float score_ = cls_pred.row(label)[i];
- if (score_ > score) {
- score = score_;
- cur_label = label;
- }
- }
- bbox.score = score;
- bbox.label = cur_label;
- result_list[cur_label].push_back(bbox);
- }
- }
- void PicoDet::decode_infer(ncnn::Mat &cls_pred, ncnn::Mat &dis_pred, int stride,
- float threshold,
- std::vector<std::vector<BoxInfo>> &results) {
- int feature_h = ceil((float)this->in_w / stride);
- int feature_w = ceil((float)this->in_h / stride);
- for (int idx = 0; idx < feature_h * feature_w; idx++) {
- const float *scores = cls_pred.row(idx);
- int row = idx / feature_w;
- int col = idx % feature_w;
- float score = 0;
- int cur_label = 0;
- for (int label = 0; label < this->num_class; label++) {
- if (scores[label] > score) {
- score = scores[label];
- cur_label = label;
- }
- }
- if (score > threshold) {
- const float *bbox_pred = dis_pred.row(idx);
- results[cur_label].push_back(
- this->disPred2Bbox(bbox_pred, cur_label, score, col, row, stride));
- }
- }
- }
- BoxInfo PicoDet::disPred2Bbox(const float *&dfl_det, int label, float score,
- int x, int y, int stride) {
- float ct_x = (x + 0.5) * stride;
- float ct_y = (y + 0.5) * stride;
- std::vector<float> dis_pred;
- dis_pred.resize(4);
- for (int i = 0; i < 4; i++) {
- float dis = 0;
- float *dis_after_sm = new float[this->reg_max + 1];
- activation_function_softmax(dfl_det + i * (this->reg_max + 1), dis_after_sm,
- this->reg_max + 1);
- for (int j = 0; j < this->reg_max + 1; j++) {
- dis += j * dis_after_sm[j];
- }
- dis *= stride;
- dis_pred[i] = dis;
- delete[] dis_after_sm;
- }
- float xmin = (std::max)(ct_x - dis_pred[0], .0f);
- float ymin = (std::max)(ct_y - dis_pred[1], .0f);
- float xmax = (std::min)(ct_x + dis_pred[2], (float)this->in_w);
- float ymax = (std::min)(ct_y + dis_pred[3], (float)this->in_w);
- return BoxInfo{xmin, ymin, xmax, ymax, score, label};
- }
- void PicoDet::nms(std::vector<BoxInfo> &input_boxes, float NMS_THRESH) {
- std::sort(input_boxes.begin(), input_boxes.end(),
- [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
- std::vector<float> vArea(input_boxes.size());
- for (int i = 0; i < int(input_boxes.size()); ++i) {
- vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) *
- (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
- }
- for (int i = 0; i < int(input_boxes.size()); ++i) {
- for (int j = i + 1; j < int(input_boxes.size());) {
- float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1);
- float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1);
- float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2);
- float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2);
- float w = (std::max)(float(0), xx2 - xx1 + 1);
- float h = (std::max)(float(0), yy2 - yy1 + 1);
- float inter = w * h;
- float ovr = inter / (vArea[i] + vArea[j] - inter);
- if (ovr >= NMS_THRESH) {
- input_boxes.erase(input_boxes.begin() + j);
- vArea.erase(vArea.begin() + j);
- } else {
- j++;
- }
- }
- }
- }
|