123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import time
- import yaml
- import glob
- from functools import reduce
- from PIL import Image
- import cv2
- import math
- import numpy as np
- import paddle
- import sys
- # add deploy path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
- sys.path.insert(0, parent_path)
- from preprocess import preprocess, NormalizeImage, Permute
- from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
- from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
- from visualize import visualize_pose
- from paddle.inference import Config
- from paddle.inference import create_predictor
- from dependence.PaddleDetection.deploy.python.utils import argsparser, Timer, get_current_memory_mb
- from benchmark_utils import PaddleInferBenchmark
- from infer import Detector, get_test_images, print_arguments
- # Global dictionary
- KEYPOINT_SUPPORT_MODELS = {
- 'HigherHRNet': 'keypoint_bottomup',
- 'HRNet': 'keypoint_topdown'
- }
- class KeyPointDetector(Detector):
- """
- Args:
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- use_dark(bool): whether to use postprocess in DarkPose
- """
- def __init__(self,
- model_dir,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5,
- use_dark=True):
- super(KeyPointDetector, self).__init__(
- model_dir=model_dir,
- device=device,
- run_mode=run_mode,
- batch_size=batch_size,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn,
- output_dir=output_dir,
- threshold=threshold, )
- self.use_dark = use_dark
- def set_config(self, model_dir):
- return PredictConfig_KeyPoint(model_dir)
- def get_person_from_rect(self, image, results):
- # crop the person result from image
- self.det_times.preprocess_time_s.start()
- valid_rects = results['boxes']
- rect_images = []
- new_rects = []
- org_rects = []
- for rect in valid_rects:
- rect_image, new_rect, org_rect = expand_crop(image, rect)
- if rect_image is None or rect_image.size == 0:
- continue
- rect_images.append(rect_image)
- new_rects.append(new_rect)
- org_rects.append(org_rect)
- self.det_times.preprocess_time_s.end()
- return rect_images, new_rects, org_rects
- def postprocess(self, inputs, result):
- np_heatmap = result['heatmap']
- np_masks = result['masks']
- # postprocess output of predictor
- if KEYPOINT_SUPPORT_MODELS[
- self.pred_config.arch] == 'keypoint_bottomup':
- results = {}
- h, w = inputs['im_shape'][0]
- preds = [np_heatmap]
- if np_masks is not None:
- preds += np_masks
- preds += [h, w]
- keypoint_postprocess = HrHRNetPostProcess()
- kpts, scores = keypoint_postprocess(*preds)
- results['keypoint'] = kpts
- results['score'] = scores
- return results
- elif KEYPOINT_SUPPORT_MODELS[
- self.pred_config.arch] == 'keypoint_topdown':
- results = {}
- imshape = inputs['im_shape'][:, ::-1]
- center = np.round(imshape / 2.)
- scale = imshape / 200.
- keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
- kpts, scores = keypoint_postprocess(np_heatmap, center, scale)
- results['keypoint'] = kpts
- results['score'] = scores
- return results
- else:
- raise ValueError("Unsupported arch: {}, expect {}".format(
- self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))
- def predict(self, repeats=1):
- '''
- Args:
- repeats (int): repeat number for prediction
- Returns:
- results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- MaskRCNN's results include 'masks': np.ndarray:
- shape: [N, im_h, im_w]
- '''
- # model prediction
- np_heatmap, np_masks = None, None
- for i in range(repeats):
- self.predictor.run()
- output_names = self.predictor.get_output_names()
- heatmap_tensor = self.predictor.get_output_handle(output_names[0])
- np_heatmap = heatmap_tensor.copy_to_cpu()
- if self.pred_config.tagmap:
- masks_tensor = self.predictor.get_output_handle(output_names[1])
- heat_k = self.predictor.get_output_handle(output_names[2])
- inds_k = self.predictor.get_output_handle(output_names[3])
- np_masks = [
- masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
- inds_k.copy_to_cpu()
- ]
- result = dict(heatmap=np_heatmap, masks=np_masks)
- return result
- def predict_image(self,
- image_list,
- run_benchmark=False,
- repeats=1,
- visual=False):
- results = []
- batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
- for i in range(batch_loop_cnt):
- start_index = i * self.batch_size
- end_index = min((i + 1) * self.batch_size, len(image_list))
- batch_image_list = image_list[start_index:end_index]
- if run_benchmark:
- # preprocess
- inputs = self.preprocess(batch_image_list) # warmup
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- result_warmup = self.predict(repeats=repeats) # warmup
- self.det_times.inference_time_s.start()
- result = self.predict(repeats=repeats)
- self.det_times.inference_time_s.end(repeats=repeats)
- # postprocess
- result_warmup = self.postprocess(inputs, result) # warmup
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(batch_image_list)
- cm, gm, gu = get_current_memory_mb()
- self.cpu_mem += cm
- self.gpu_mem += gm
- self.gpu_util += gu
- else:
- # preprocess
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- self.det_times.inference_time_s.start()
- result = self.predict()
- self.det_times.inference_time_s.end()
- # postprocess
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(batch_image_list)
- if visual:
- if not os.path.exists(self.output_dir):
- os.makedirs(self.output_dir)
- visualize(
- batch_image_list,
- result,
- visual_thresh=self.threshold,
- save_dir=self.output_dir)
- results.append(result)
- if visual:
- print('Test iter {}'.format(i))
- results = self.merge_batch_result(results)
- return results
- def predict_video(self, video_file, camera_id):
- video_name = 'output.mp4'
- if camera_id != -1:
- capture = cv2.VideoCapture(camera_id)
- else:
- capture = cv2.VideoCapture(video_file)
- video_name = os.path.split(video_file)[-1]
- # Get Video info : resolution, fps, frame count
- width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
- height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
- fps = int(capture.get(cv2.CAP_PROP_FPS))
- frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
- print("fps: %d, frame_count: %d" % (fps, frame_count))
- if not os.path.exists(self.output_dir):
- os.makedirs(self.output_dir)
- out_path = os.path.join(self.output_dir, video_name)
- fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
- writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
- index = 1
- while (1):
- ret, frame = capture.read()
- if not ret:
- break
- print('detect frame: %d' % (index))
- index += 1
- results = self.predict_image([frame[:, :, ::-1]], visual=False)
- im_results = {}
- im_results['keypoint'] = [results['keypoint'], results['score']]
- im = visualize_pose(
- frame, im_results, visual_thresh=self.threshold, returnimg=True)
- writer.write(im)
- if camera_id != -1:
- cv2.imshow('Mask Detection', im)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- writer.release()
- def create_inputs(imgs, im_info):
- """generate input for different model type
- Args:
- imgs (list(numpy)): list of image (np.ndarray)
- im_info (list(dict)): list of image info
- Returns:
- inputs (dict): input of model
- """
- inputs = {}
- inputs['image'] = np.stack(imgs, axis=0).astype('float32')
- im_shape = []
- for e in im_info:
- im_shape.append(np.array((e['im_shape'])).astype('float32'))
- inputs['im_shape'] = np.stack(im_shape, axis=0)
- return inputs
- class PredictConfig_KeyPoint():
- """set config of preprocess, postprocess and visualize
- Args:
- model_dir (str): root path of model.yml
- """
- def __init__(self, model_dir):
- # parsing Yaml config for Preprocess
- deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
- with open(deploy_file) as f:
- yml_conf = yaml.safe_load(f)
- self.check_model(yml_conf)
- self.arch = yml_conf['arch']
- self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
- self.preprocess_infos = yml_conf['Preprocess']
- self.min_subgraph_size = yml_conf['min_subgraph_size']
- self.labels = yml_conf['label_list']
- self.tagmap = False
- self.use_dynamic_shape = yml_conf['use_dynamic_shape']
- if 'keypoint_bottomup' == self.archcls:
- self.tagmap = True
- self.print_config()
- def check_model(self, yml_conf):
- """
- Raises:
- ValueError: loaded model not in supported model type
- """
- for support_model in KEYPOINT_SUPPORT_MODELS:
- if support_model in yml_conf['arch']:
- return True
- raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
- 'arch'], KEYPOINT_SUPPORT_MODELS))
- def print_config(self):
- print('----------- Model Configuration -----------')
- print('%s: %s' % ('Model Arch', self.arch))
- print('%s: ' % ('Transform Order'))
- for op_info in self.preprocess_infos:
- print('--%s: %s' % ('transform op', op_info['type']))
- print('--------------------------------------------')
- def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
- im_results = {}
- for i, image_file in enumerate(image_list):
- skeletons = results['keypoint']
- scores = results['score']
- skeleton = skeletons[i:i + 1]
- score = scores[i:i + 1]
- im_results['keypoint'] = [skeleton, score]
- visualize_pose(
- image_file,
- im_results,
- visual_thresh=visual_thresh,
- save_dir=save_dir)
- def main():
- detector = KeyPointDetector(
- FLAGS.model_dir,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- batch_size=FLAGS.batch_size,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- threshold=FLAGS.threshold,
- output_dir=FLAGS.output_dir,
- use_dark=FLAGS.use_dark)
- # predict from video file or camera video stream
- if FLAGS.video_file is not None or FLAGS.camera_id != -1:
- detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
- else:
- # predict from image
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
- if not FLAGS.run_benchmark:
- detector.det_times.info(average=True)
- else:
- mems = {
- 'cpu_rss_mb': detector.cpu_mem / len(img_list),
- 'gpu_rss_mb': detector.gpu_mem / len(img_list),
- 'gpu_util': detector.gpu_util * 100 / len(img_list)
- }
- perf_info = detector.det_times.report(average=True)
- model_dir = FLAGS.model_dir
- mode = FLAGS.run_mode
- model_info = {
- 'model_name': model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- data_info = {
- 'batch_size': 1,
- 'shape': "dynamic_shape",
- 'data_num': perf_info['img_num']
- }
- det_log = PaddleInferBenchmark(detector.config, model_info,
- data_info, perf_info, mems)
- det_log('KeyPoint')
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- print_arguments(FLAGS)
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
- main()
|