123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import copy
- class Result(object):
- def __init__(self):
- self.res_dict = {
- 'det': dict(),
- 'mot': dict(),
- 'attr': dict(),
- 'kpt': dict(),
- 'action': dict(),
- 'reid': dict()
- }
- def update(self, res, name):
- self.res_dict[name].update(res)
- def get(self, name):
- if name in self.res_dict and len(self.res_dict[name]) > 0:
- return self.res_dict[name]
- return None
- def clear(self, name):
- self.res_dict[name].clear()
- class DataCollector(object):
- """
- DataCollector of pphuman Pipeline, collect results in every frames and assign it to each track ids.
- mainly used in mtmct.
-
- data struct:
- collector:
- - [id1]: (all results of N frames)
- - frames(list of int): Nx[int]
- - rects(list of rect): Nx[rect(conf, xmin, ymin, xmax, ymax)]
- - features(list of array(256,)): Nx[array(256,)]
- - qualities(list of float): Nx[float]
- - attrs(list of attr): refer to attrs for details
- - kpts(list of kpts): refer to kpts for details
- - actions(list of actions): refer to actions for details
- ...
- - [idN]
- """
- def __init__(self):
- #id, frame, rect, score, label, attrs, kpts, actions
- self.mots = {
- "frames": [],
- "rects": [],
- "attrs": [],
- "kpts": [],
- "features": [],
- "qualities": [],
- "actions": []
- }
- self.collector = {}
- def append(self, frameid, Result):
- mot_res = Result.get('mot')
- attr_res = Result.get('attr')
- kpt_res = Result.get('kpt')
- action_res = Result.get('action')
- reid_res = Result.get('reid')
- rects = reid_res['rects'] if reid_res is not None else mot_res['boxes']
- for idx, mot_item in enumerate(rects):
- ids = int(mot_item[0])
- if ids not in self.collector:
- self.collector[ids] = copy.deepcopy(self.mots)
- self.collector[ids]["frames"].append(frameid)
- self.collector[ids]["rects"].append([mot_item[2:]])
- if attr_res:
- self.collector[ids]["attrs"].append(attr_res['output'][idx])
- if kpt_res:
- self.collector[ids]["kpts"].append(
- [kpt_res['keypoint'][0][idx], kpt_res['keypoint'][1][idx]])
- if action_res and (idx + 1) in action_res:
- self.collector[ids]["actions"].append(action_res[idx + 1])
- else:
- # action model generate result per X frames, Not available every frames
- self.collector[ids]["actions"].append(None)
- if reid_res:
- self.collector[ids]["features"].append(reid_res['features'][
- idx])
- self.collector[ids]["qualities"].append(reid_res['qualities'][
- idx])
- def get_res(self):
- return self.collector
|