123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # This file comes from
- # https://github.com/facebookresearch/detectron2/blob/master/detectron2/evaluation/fast_eval_api.py
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- import numpy as np
- from pycocotools.cocoeval import COCOeval
- # import torch first to make yolox._C work without ImportError of libc10.so
- # in YOLOX, env is already set in __init__.py.
- from yolox import _C
- import copy
- import time
- class COCOeval_opt(COCOeval):
- """
- This is a slightly modified version of the original COCO API, where the functions evaluateImg()
- and accumulate() are implemented in C++ to speedup evaluation
- """
- def evaluate(self):
- """
- Run per image evaluation on given images and store results in self.evalImgs_cpp, a
- datastructure that isn't readable from Python but is used by a c++ implementation of
- accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure
- self.evalImgs because this datastructure is a computational bottleneck.
- :return: None
- """
- tic = time.time()
- print("Running per image evaluation...")
- p = self.params
- # add backward compatibility if useSegm is specified in params
- if p.useSegm is not None:
- p.iouType = "segm" if p.useSegm == 1 else "bbox"
- print(
- "useSegm (deprecated) is not None. Running {} evaluation".format(
- p.iouType
- )
- )
- print("Evaluate annotation type *{}*".format(p.iouType))
- p.imgIds = list(np.unique(p.imgIds))
- if p.useCats:
- p.catIds = list(np.unique(p.catIds))
- p.maxDets = sorted(p.maxDets)
- self.params = p
- self._prepare()
- # loop through images, area range, max detection number
- catIds = p.catIds if p.useCats else [-1]
- if p.iouType == "segm" or p.iouType == "bbox":
- computeIoU = self.computeIoU
- elif p.iouType == "keypoints":
- computeIoU = self.computeOks
- self.ious = {
- (imgId, catId): computeIoU(imgId, catId)
- for imgId in p.imgIds
- for catId in catIds
- }
- maxDet = p.maxDets[-1]
- # <<<< Beginning of code differences with original COCO API
- def convert_instances_to_cpp(instances, is_det=False):
- # Convert annotations for a list of instances in an image to a format that's fast
- # to access in C++
- instances_cpp = []
- for instance in instances:
- instance_cpp = _C.InstanceAnnotation(
- int(instance["id"]),
- instance["score"] if is_det else instance.get("score", 0.0),
- instance["area"],
- bool(instance.get("iscrowd", 0)),
- bool(instance.get("ignore", 0)),
- )
- instances_cpp.append(instance_cpp)
- return instances_cpp
- # Convert GT annotations, detections, and IOUs to a format that's fast to access in C++
- ground_truth_instances = [
- [convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds]
- for imgId in p.imgIds
- ]
- detected_instances = [
- [
- convert_instances_to_cpp(self._dts[imgId, catId], is_det=True)
- for catId in p.catIds
- ]
- for imgId in p.imgIds
- ]
- ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds]
- if not p.useCats:
- # For each image, flatten per-category lists into a single list
- ground_truth_instances = [
- [[o for c in i for o in c]] for i in ground_truth_instances
- ]
- detected_instances = [
- [[o for c in i for o in c]] for i in detected_instances
- ]
- # Call C++ implementation of self.evaluateImgs()
- self._evalImgs_cpp = _C.COCOevalEvaluateImages(
- p.areaRng,
- maxDet,
- p.iouThrs,
- ious,
- ground_truth_instances,
- detected_instances,
- )
- self._evalImgs = None
- self._paramsEval = copy.deepcopy(self.params)
- toc = time.time()
- print("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic))
- # >>>> End of code differences with original COCO API
- def accumulate(self):
- """
- Accumulate per image evaluation results and store the result in self.eval. Does not
- support changing parameter settings from those used by self.evaluate()
- """
- print("Accumulating evaluation results...")
- tic = time.time()
- if not hasattr(self, "_evalImgs_cpp"):
- print("Please run evaluate() first")
- self.eval = _C.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp)
- # recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
- self.eval["recall"] = np.array(self.eval["recall"]).reshape(
- self.eval["counts"][:1] + self.eval["counts"][2:]
- )
- # precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X
- # num_area_ranges X num_max_detections
- self.eval["precision"] = np.array(self.eval["precision"]).reshape(
- self.eval["counts"]
- )
- self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"])
- toc = time.time()
- print(
- "COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic)
- )
|