123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650 |
- # ------------------------------------------------------------------------
- # Copyright (c) 2021 megvii-model. All Rights Reserved.
- # ------------------------------------------------------------------------
- # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
- # Copyright (c) 2020 SenseTime. All Rights Reserved.
- # ------------------------------------------------------------------------
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # ------------------------------------------------------------------------
- """
- Transforms and data augmentation for both image + bbox.
- """
- import copy
- import random
- import PIL
- import torch
- import torchvision.transforms as T
- import torchvision.transforms.functional as F
- from PIL import Image, ImageDraw
- from util.box_ops import box_xyxy_to_cxcywh
- from util.misc import interpolate
- import numpy as np
- import os
- def crop_mot(image, target, region):
- cropped_image = F.crop(image, *region)
- target = target.copy()
- i, j, h, w = region
- # should we do something wrt the original size?
- target["size"] = torch.tensor([h, w])
- fields = ["labels", "area", "iscrowd"]
- if 'obj_ids' in target:
- fields.append('obj_ids')
- if "boxes" in target:
- boxes = target["boxes"]
- max_size = torch.as_tensor([w, h], dtype=torch.float32)
- cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
-
- for i, box in enumerate(cropped_boxes):
- l, t, r, b = box
- # if l < 0:
- # l = 0
- # if r < 0:
- # r = 0
- # if l > w:
- # l = w
- # if r > w:
- # r = w
- # if t < 0:
- # t = 0
- # if b < 0:
- # b = 0
- # if t > h:
- # t = h
- # if b > h:
- # b = h
- if l < 0 and r < 0:
- l = r = 0
- if l > w and r > w:
- l = r = w
- if t < 0 and b < 0:
- t = b = 0
- if t > h and b > h:
- t = b = h
- cropped_boxes[i] = torch.tensor([l, t, r, b], dtype=box.dtype)
- cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
- cropped_boxes = cropped_boxes.clamp(min=0)
- area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
- target["boxes"] = cropped_boxes.reshape(-1, 4)
- target["area"] = area
- fields.append("boxes")
- if "masks" in target:
- # FIXME should we update the area here if there are no boxes?
- target['masks'] = target['masks'][:, i:i + h, j:j + w]
- fields.append("masks")
- # remove elements for which the boxes or masks that have zero area
- if "boxes" in target or "masks" in target:
- # favor boxes selection when defining which elements to keep
- # this is compatible with previous implementation
- if "boxes" in target:
- cropped_boxes = target['boxes'].reshape(-1, 2, 2)
- keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
- else:
- keep = target['masks'].flatten(1).any(1)
- for field in fields:
- target[field] = target[field][keep]
- return cropped_image, target
- def random_shift(image, target, region, sizes):
- oh, ow = sizes
- # step 1, shift crop and re-scale image firstly
- cropped_image = F.crop(image, *region)
- cropped_image = F.resize(cropped_image, sizes)
- target = target.copy()
- i, j, h, w = region
- # should we do something wrt the original size?
- target["size"] = torch.tensor([h, w])
- fields = ["labels", "area", "iscrowd"]
- if 'obj_ids' in target:
- fields.append('obj_ids')
- if "boxes" in target:
- boxes = target["boxes"]
- max_size = torch.as_tensor([w, h], dtype=torch.float32)
- cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
- for i, box in enumerate(cropped_boxes):
- l, t, r, b = box
- if l < 0:
- l = 0
- if r < 0:
- r = 0
- if l > w:
- l = w
- if r > w:
- r = w
- if t < 0:
- t = 0
- if b < 0:
- b = 0
- if t > h:
- t = h
- if b > h:
- b = h
- # step 2, re-scale coords secondly
- ratio_h = 1.0 * oh / h
- ratio_w = 1.0 * ow / w
- cropped_boxes[i] = torch.tensor([ratio_w * l, ratio_h * t, ratio_w * r, ratio_h * b], dtype=box.dtype)
-
- cropped_boxes = cropped_boxes.reshape(-1, 2, 2)
- area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
- target["boxes"] = cropped_boxes.reshape(-1, 4)
- target["area"] = area
- fields.append("boxes")
- if "masks" in target:
- # FIXME should we update the area here if there are no boxes?
- target['masks'] = target['masks'][:, i:i + h, j:j + w]
- fields.append("masks")
- # remove elements for which the boxes or masks that have zero area
- if "boxes" in target or "masks" in target:
- # favor boxes selection when defining which elements to keep
- # this is compatible with previous implementation
- if "boxes" in target:
- cropped_boxes = target['boxes'].reshape(-1, 2, 2)
- keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
- else:
- keep = target['masks'].flatten(1).any(1)
- for field in fields:
- target[field] = target[field][keep]
- return cropped_image, target
- def crop(image, target, region):
- cropped_image = F.crop(image, *region)
- target = target.copy()
- i, j, h, w = region
- # should we do something wrt the original size?
- target["size"] = torch.tensor([h, w])
- fields = ["labels", "area", "iscrowd"]
- if 'obj_ids' in target:
- fields.append('obj_ids')
- if "boxes" in target:
- boxes = target["boxes"]
- max_size = torch.as_tensor([w, h], dtype=torch.float32)
- cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
- cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
- cropped_boxes = cropped_boxes.clamp(min=0)
- area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
- target["boxes"] = cropped_boxes.reshape(-1, 4)
- target["area"] = area
- fields.append("boxes")
- if "masks" in target:
- # FIXME should we update the area here if there are no boxes?
- target['masks'] = target['masks'][:, i:i + h, j:j + w]
- fields.append("masks")
- # remove elements for which the boxes or masks that have zero area
- if "boxes" in target or "masks" in target:
- # favor boxes selection when defining which elements to keep
- # this is compatible with previous implementation
- if "boxes" in target:
- cropped_boxes = target['boxes'].reshape(-1, 2, 2)
- keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
- else:
- keep = target['masks'].flatten(1).any(1)
- for field in fields:
- target[field] = target[field][keep]
- return cropped_image, target
- def hflip(image, target):
- flipped_image = F.hflip(image)
- w, h = image.size
- target = target.copy()
- if "boxes" in target:
- boxes = target["boxes"]
- boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
- target["boxes"] = boxes
- if "masks" in target:
- target['masks'] = target['masks'].flip(-1)
- return flipped_image, target
- def resize(image, target, size, max_size=None):
- # size can be min_size (scalar) or (w, h) tuple
- def get_size_with_aspect_ratio(image_size, size, max_size=None):
- w, h = image_size
- if max_size is not None:
- min_original_size = float(min((w, h)))
- max_original_size = float(max((w, h)))
- if max_original_size / min_original_size * size > max_size:
- size = int(round(max_size * min_original_size / max_original_size))
- if (w <= h and w == size) or (h <= w and h == size):
- return (h, w)
- if w < h:
- ow = size
- oh = int(size * h / w)
- else:
- oh = size
- ow = int(size * w / h)
- return (oh, ow)
- def get_size(image_size, size, max_size=None):
- if isinstance(size, (list, tuple)):
- return size[::-1]
- else:
- return get_size_with_aspect_ratio(image_size, size, max_size)
- size = get_size(image.size, size, max_size)
- rescaled_image = F.resize(image, size)
- if target is None:
- return rescaled_image, None
- ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
- ratio_width, ratio_height = ratios
- target = target.copy()
- if "boxes" in target:
- boxes = target["boxes"]
- scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
- target["boxes"] = scaled_boxes
- if "area" in target:
- area = target["area"]
- scaled_area = area * (ratio_width * ratio_height)
- target["area"] = scaled_area
- h, w = size
- target["size"] = torch.tensor([h, w])
- if "masks" in target:
- target['masks'] = interpolate(
- target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
- return rescaled_image, target
- def pad(image, target, padding):
- # assumes that we only pad on the bottom right corners
- padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
- if target is None:
- return padded_image, None
- target = target.copy()
- # should we do something wrt the original size?
- target["size"] = torch.tensor(padded_image[::-1])
- if "masks" in target:
- target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
- return padded_image, target
- class RandomCrop(object):
- def __init__(self, size):
- self.size = size
- def __call__(self, img, target):
- region = T.RandomCrop.get_params(img, self.size)
- return crop(img, target, region)
- class MotRandomCrop(RandomCrop):
- def __call__(self, imgs: list, targets: list):
- ret_imgs = []
- ret_targets = []
- region = T.RandomCrop.get_params(imgs[0], self.size)
- for img_i, targets_i in zip(imgs, targets):
- img_i, targets_i = crop(img_i, targets_i, region)
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class FixedMotRandomCrop(object):
- def __init__(self, min_size: int, max_size: int):
- self.min_size = min_size
- self.max_size = max_size
- def __call__(self, imgs: list, targets: list):
- ret_imgs = []
- ret_targets = []
- w = random.randint(self.min_size, min(imgs[0].width, self.max_size))
- h = random.randint(self.min_size, min(imgs[0].height, self.max_size))
- region = T.RandomCrop.get_params(imgs[0], [h, w])
- for img_i, targets_i in zip(imgs, targets):
- img_i, targets_i = crop_mot(img_i, targets_i, region)
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class MotRandomShift(object):
- def __init__(self, bs=1):
- self.bs = bs
- def __call__(self, imgs: list, targets: list):
- ret_imgs = copy.deepcopy(imgs)
- ret_targets = copy.deepcopy(targets)
- n_frames = len(imgs)
- select_i = random.choice(list(range(n_frames)))
- w, h = imgs[select_i].size
- xshift = (100 * torch.rand(self.bs)).int()
- xshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
- yshift = (100 * torch.rand(self.bs)).int()
- yshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
- ymin = max(0, -yshift[0])
- ymax = min(h, h - yshift[0])
- xmin = max(0, -xshift[0])
- xmax = min(w, w - xshift[0])
- region = (int(ymin), int(xmin), int(ymax-ymin), int(xmax-xmin))
- ret_imgs[select_i], ret_targets[select_i] = random_shift(imgs[select_i], targets[select_i], region, (h,w))
-
- return ret_imgs, ret_targets
- class FixedMotRandomShift(object):
- def __init__(self, bs=1, padding=50):
- self.bs = bs
- self.padding = padding
- def __call__(self, imgs: list, targets: list):
- ret_imgs = []
- ret_targets = []
- n_frames = len(imgs)
- w, h = imgs[0].size
- xshift = (self.padding * torch.rand(self.bs)).int() + 1
- xshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
- yshift = (self.padding * torch.rand(self.bs)).int() + 1
- yshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
- ret_imgs.append(imgs[0])
- ret_targets.append(targets[0])
- for i in range(1, n_frames):
- ymin = max(0, -yshift[0])
- ymax = min(h, h - yshift[0])
- xmin = max(0, -xshift[0])
- xmax = min(w, w - xshift[0])
- prev_img = ret_imgs[i-1].copy()
- prev_target = copy.deepcopy(ret_targets[i-1])
- region = (int(ymin), int(xmin), int(ymax - ymin), int(xmax - xmin))
- img_i, target_i = random_shift(prev_img, prev_target, region, (h, w))
- ret_imgs.append(img_i)
- ret_targets.append(target_i)
- return ret_imgs, ret_targets
- class RandomSizeCrop(object):
- def __init__(self, min_size: int, max_size: int):
- self.min_size = min_size
- self.max_size = max_size
- def __call__(self, img: PIL.Image.Image, target: dict):
- w = random.randint(self.min_size, min(img.width, self.max_size))
- h = random.randint(self.min_size, min(img.height, self.max_size))
- region = T.RandomCrop.get_params(img, [h, w])
- return crop(img, target, region)
- class MotRandomSizeCrop(RandomSizeCrop):
- def __call__(self, imgs, targets):
- w = random.randint(self.min_size, min(imgs[0].width, self.max_size))
- h = random.randint(self.min_size, min(imgs[0].height, self.max_size))
- region = T.RandomCrop.get_params(imgs[0], [h, w])
- ret_imgs = []
- ret_targets = []
- for img_i, targets_i in zip(imgs, targets):
- img_i, targets_i = crop(img_i, targets_i, region)
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class CenterCrop(object):
- def __init__(self, size):
- self.size = size
- def __call__(self, img, target):
- image_width, image_height = img.size
- crop_height, crop_width = self.size
- crop_top = int(round((image_height - crop_height) / 2.))
- crop_left = int(round((image_width - crop_width) / 2.))
- return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
- class MotCenterCrop(CenterCrop):
- def __call__(self, imgs, targets):
- image_width, image_height = imgs[0].size
- crop_height, crop_width = self.size
- crop_top = int(round((image_height - crop_height) / 2.))
- crop_left = int(round((image_width - crop_width) / 2.))
- ret_imgs = []
- ret_targets = []
- for img_i, targets_i in zip(imgs, targets):
- img_i, targets_i = crop(img_i, targets_i, (crop_top, crop_left, crop_height, crop_width))
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class RandomHorizontalFlip(object):
- def __init__(self, p=0.5):
- self.p = p
- def __call__(self, img, target):
- if random.random() < self.p:
- return hflip(img, target)
- return img, target
- class MotRandomHorizontalFlip(RandomHorizontalFlip):
- def __call__(self, imgs, targets):
- if random.random() < self.p:
- ret_imgs = []
- ret_targets = []
- for img_i, targets_i in zip(imgs, targets):
- img_i, targets_i = hflip(img_i, targets_i)
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- return imgs, targets
- class RandomResize(object):
- def __init__(self, sizes, max_size=None):
- assert isinstance(sizes, (list, tuple))
- self.sizes = sizes
- self.max_size = max_size
- def __call__(self, img, target=None):
- size = random.choice(self.sizes)
- return resize(img, target, size, self.max_size)
- class MotRandomResize(RandomResize):
- def __call__(self, imgs, targets):
- size = random.choice(self.sizes)
- ret_imgs = []
- ret_targets = []
- for img_i, targets_i in zip(imgs, targets):
- img_i, targets_i = resize(img_i, targets_i, size, self.max_size)
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class RandomPad(object):
- def __init__(self, max_pad):
- self.max_pad = max_pad
- def __call__(self, img, target):
- pad_x = random.randint(0, self.max_pad)
- pad_y = random.randint(0, self.max_pad)
- return pad(img, target, (pad_x, pad_y))
- class MotRandomPad(RandomPad):
- def __call__(self, imgs, targets):
- pad_x = random.randint(0, self.max_pad)
- pad_y = random.randint(0, self.max_pad)
- ret_imgs = []
- ret_targets = []
- for img_i, targets_i in zip(imgs, targets):
- img_i, target_i = pad(img_i, targets_i, (pad_x, pad_y))
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class RandomSelect(object):
- """
- Randomly selects between transforms1 and transforms2,
- with probability p for transforms1 and (1 - p) for transforms2
- """
- def __init__(self, transforms1, transforms2, p=0.5):
- self.transforms1 = transforms1
- self.transforms2 = transforms2
- self.p = p
- def __call__(self, img, target):
- if random.random() < self.p:
- return self.transforms1(img, target)
- return self.transforms2(img, target)
- class MotRandomSelect(RandomSelect):
- """
- Randomly selects between transforms1 and transforms2,
- with probability p for transforms1 and (1 - p) for transforms2
- """
- def __call__(self, imgs, targets):
- if random.random() < self.p:
- return self.transforms1(imgs, targets)
- return self.transforms2(imgs, targets)
- class ToTensor(object):
- def __call__(self, img, target):
- return F.to_tensor(img), target
- class MotToTensor(ToTensor):
- def __call__(self, imgs, targets):
- ret_imgs = []
- for img in imgs:
- ret_imgs.append(F.to_tensor(img))
- return ret_imgs, targets
- class RandomErasing(object):
- def __init__(self, *args, **kwargs):
- self.eraser = T.RandomErasing(*args, **kwargs)
- def __call__(self, img, target):
- return self.eraser(img), target
- class MotRandomErasing(RandomErasing):
- def __call__(self, imgs, targets):
- # TODO: Rewrite this part to ensure the data augmentation is same to each image.
- ret_imgs = []
- for img_i, targets_i in zip(imgs, targets):
- ret_imgs.append(self.eraser(img_i))
- return ret_imgs, targets
- class MoTColorJitter(T.ColorJitter):
- def __call__(self, imgs, targets):
- transform = self.get_params(self.brightness, self.contrast,
- self.saturation, self.hue)
- ret_imgs = []
- for img_i, targets_i in zip(imgs, targets):
- ret_imgs.append(transform(img_i))
- return ret_imgs, targets
- class Normalize(object):
- def __init__(self, mean, std):
- self.mean = mean
- self.std = std
- def __call__(self, image, target=None):
- if target is not None:
- target['ori_img'] = image.clone()
- image = F.normalize(image, mean=self.mean, std=self.std)
- if target is None:
- return image, None
- target = target.copy()
- h, w = image.shape[-2:]
- if "boxes" in target:
- boxes = target["boxes"]
- boxes = box_xyxy_to_cxcywh(boxes)
- boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
- target["boxes"] = boxes
- return image, target
- class MotNormalize(Normalize):
- def __call__(self, imgs, targets=None):
- ret_imgs = []
- ret_targets = []
- for i in range(len(imgs)):
- img_i = imgs[i]
- targets_i = targets[i] if targets is not None else None
- img_i, targets_i = super().__call__(img_i, targets_i)
- ret_imgs.append(img_i)
- ret_targets.append(targets_i)
- return ret_imgs, ret_targets
- class Compose(object):
- def __init__(self, transforms):
- self.transforms = transforms
- def __call__(self, image, target):
- for t in self.transforms:
- image, target = t(image, target)
- return image, target
- def __repr__(self):
- format_string = self.__class__.__name__ + "("
- for t in self.transforms:
- format_string += "\n"
- format_string += " {0}".format(t)
- format_string += "\n)"
- return format_string
- class MotCompose(Compose):
- def __call__(self, imgs, targets):
- for t in self.transforms:
- imgs, targets = t(imgs, targets)
- return imgs, targets
|