mask_rcnn_r50_2x.yml 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. architecture: MaskRCNN
  2. use_gpu: true
  3. max_iters: 360000
  4. snapshot_iter: 10000
  5. log_iter: 20
  6. save_dir: output
  7. pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
  8. metric: COCO
  9. weights: output/mask_rcnn_r50_2x/model_final
  10. num_classes: 81
  11. MaskRCNN:
  12. backbone: ResNet
  13. rpn_head: RPNHead
  14. roi_extractor: RoIAlign
  15. bbox_assigner: BBoxAssigner
  16. bbox_head: BBoxHead
  17. mask_assigner: MaskAssigner
  18. mask_head: MaskHead
  19. ResNet:
  20. norm_type: affine_channel
  21. norm_decay: 0.
  22. depth: 50
  23. feature_maps: 4
  24. freeze_at: 2
  25. ResNetC5:
  26. depth: 50
  27. norm_type: affine_channel
  28. RPNHead:
  29. anchor_generator:
  30. anchor_sizes: [32, 64, 128, 256, 512]
  31. aspect_ratios: [0.5, 1.0, 2.0]
  32. stride: [16.0, 16.0]
  33. variance: [1.0, 1.0, 1.0, 1.0]
  34. rpn_target_assign:
  35. rpn_batch_size_per_im: 256
  36. rpn_fg_fraction: 0.5
  37. rpn_negative_overlap: 0.3
  38. rpn_positive_overlap: 0.7
  39. rpn_straddle_thresh: 0.0
  40. train_proposal:
  41. min_size: 0.0
  42. nms_thresh: 0.7
  43. pre_nms_top_n: 12000
  44. post_nms_top_n: 2000
  45. test_proposal:
  46. min_size: 0.0
  47. nms_thresh: 0.7
  48. pre_nms_top_n: 6000
  49. post_nms_top_n: 1000
  50. RoIAlign:
  51. resolution: 14
  52. spatial_scale: 0.0625
  53. sampling_ratio: 0
  54. BBoxHead:
  55. head: ResNetC5
  56. nms:
  57. keep_top_k: 100
  58. nms_threshold: 0.5
  59. normalized: false
  60. score_threshold: 0.05
  61. MaskHead:
  62. dilation: 1
  63. conv_dim: 256
  64. resolution: 14
  65. BBoxAssigner:
  66. batch_size_per_im: 512
  67. bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  68. bg_thresh_hi: 0.5
  69. bg_thresh_lo: 0.0
  70. fg_fraction: 0.25
  71. fg_thresh: 0.5
  72. MaskAssigner:
  73. resolution: 14
  74. LearningRate:
  75. base_lr: 0.01
  76. schedulers:
  77. - !PiecewiseDecay
  78. gamma: 0.1
  79. milestones: [240000, 320000]
  80. #start the warm up from base_lr * start_factor
  81. - !LinearWarmup
  82. start_factor: 0.3333333333333333
  83. steps: 500
  84. OptimizerBuilder:
  85. optimizer:
  86. momentum: 0.9
  87. type: Momentum
  88. regularizer:
  89. factor: 0.0001
  90. type: L2
  91. _READER_: 'mask_reader.yml'