12345678910111213141516171819202122232425262728293031323334353637383940 |
- # Resume all interrupted trainings in yolov5/ dir including DDP trainings
- # Usage: $ python utils/aws/resume.py
- import os
- import sys
- from pathlib import Path
- import torch
- import yaml
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[2] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- port = 0 # --master_port
- path = Path('').resolve()
- for last in path.rglob('*/**/last.pt'):
- ckpt = torch.load(last)
- if ckpt['optimizer'] is None:
- continue
- # Load opt.yaml
- with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
- opt = yaml.safe_load(f)
- # Get device count
- d = opt['device'].split(',') # devices
- nd = len(d) # number of devices
- ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
- if ddp: # multi-GPU
- port += 1
- cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
- else: # single-GPU
- cmd = f'python train.py --resume {last}'
- cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
- print(cmd)
- os.system(cmd)
|