123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is based on https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
- Ths copyright of microsoft/Swin-Transformer is as follows:
- MIT License [see LICENSE for details]
- """
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import TruncatedNormal, Constant, Assign
- from ppdet.modeling.shape_spec import ShapeSpec
- from ppdet.core.workspace import register, serializable
- import numpy as np
- # Common initializations
- ones_ = Constant(value=1.)
- zeros_ = Constant(value=0.)
- trunc_normal_ = TruncatedNormal(std=.02)
- # Common Functions
- def to_2tuple(x):
- return tuple([x] * 2)
- def add_parameter(layer, datas, name=None):
- parameter = layer.create_parameter(
- shape=(datas.shape), default_initializer=Assign(datas))
- if name:
- layer.add_parameter(name, parameter)
- return parameter
- # Common Layers
- def drop_path(x, drop_prob=0., training=False):
- """
- Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
- """
- if drop_prob == 0. or not training:
- return x
- keep_prob = paddle.to_tensor(1 - drop_prob)
- shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
- random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
- random_tensor = paddle.floor(random_tensor) # binarize
- output = x.divide(keep_prob) * random_tensor
- return output
- class DropPath(nn.Layer):
- def __init__(self, drop_prob=None):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
- def forward(self, x):
- return drop_path(x, self.drop_prob, self.training)
- class Identity(nn.Layer):
- def __init__(self):
- super(Identity, self).__init__()
- def forward(self, input):
- return input
- class Mlp(nn.Layer):
- def __init__(self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- def window_partition(x, window_size):
- """
- Args:
- x: (B, H, W, C)
- window_size (int): window size
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.reshape(
- [B, H // window_size, window_size, W // window_size, window_size, C])
- windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape(
- [-1, window_size, window_size, C])
- return windows
- def window_reverse(windows, window_size, H, W):
- """
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- x = windows.reshape(
- [B, H // window_size, W // window_size, window_size, window_size, -1])
- x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([B, H, W, -1])
- return x
- class WindowAttention(nn.Layer):
- """ Window based multi-head self attention (W-MSA) module with relative position bias.
- It supports both of shifted and non-shifted window.
- Args:
- dim (int): Number of input channels.
- window_size (tuple[int]): The height and width of the window.
- num_heads (int): Number of attention heads.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- """
- def __init__(self,
- dim,
- window_size,
- num_heads,
- qkv_bias=True,
- qk_scale=None,
- attn_drop=0.,
- proj_drop=0.):
- super().__init__()
- self.dim = dim
- self.window_size = window_size # Wh, Ww
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim**-0.5
- # define a parameter table of relative position bias
- self.relative_position_bias_table = add_parameter(
- self,
- paddle.zeros(((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
- num_heads))) # 2*Wh-1 * 2*Ww-1, nH
- # get pair-wise relative position index for each token inside the window
- coords_h = paddle.arange(self.window_size[0])
- coords_w = paddle.arange(self.window_size[1])
- coords = paddle.stack(paddle.meshgrid(
- [coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
- coords_flatten_1 = coords_flatten.unsqueeze(axis=2)
- coords_flatten_2 = coords_flatten.unsqueeze(axis=1)
- relative_coords = coords_flatten_1 - coords_flatten_2
- relative_coords = relative_coords.transpose(
- [1, 2, 0]) # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += self.window_size[
- 0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- self.relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- self.register_buffer("relative_position_index",
- self.relative_position_index)
- self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- trunc_normal_(self.relative_position_bias_table)
- self.softmax = nn.Softmax(axis=-1)
- def forward(self, x, mask=None):
- """ Forward function.
- Args:
- x: input features with shape of (num_windows*B, N, C)
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
- """
- B_, N, C = x.shape
- qkv = self.qkv(x).reshape(
- [B_, N, 3, self.num_heads, C // self.num_heads]).transpose(
- [2, 0, 3, 1, 4])
- q, k, v = qkv[0], qkv[1], qkv[2]
- q = q * self.scale
- attn = paddle.mm(q, k.transpose([0, 1, 3, 2]))
- index = self.relative_position_index.reshape([-1])
- relative_position_bias = paddle.index_select(
- self.relative_position_bias_table, index)
- relative_position_bias = relative_position_bias.reshape([
- self.window_size[0] * self.window_size[1],
- self.window_size[0] * self.window_size[1], -1
- ]) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.transpose(
- [2, 0, 1]) # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N
- ]) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.reshape([-1, self.num_heads, N, N])
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
- attn = self.attn_drop(attn)
- # x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
- x = paddle.mm(attn, v).transpose([0, 2, 1, 3]).reshape([B_, N, C])
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class SwinTransformerBlock(nn.Layer):
- """ Swin Transformer Block.
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads.
- window_size (int): Window size.
- shift_size (int): Shift size for SW-MSA.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
- """
- def __init__(self,
- dim,
- num_heads,
- window_size=7,
- shift_size=0,
- mlp_ratio=4.,
- qkv_bias=True,
- qk_scale=None,
- drop=0.,
- attn_drop=0.,
- drop_path=0.,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
- self.norm1 = norm_layer(dim)
- self.attn = WindowAttention(
- dim,
- window_size=to_2tuple(self.window_size),
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- attn_drop=attn_drop,
- proj_drop=drop)
- self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- self.H = None
- self.W = None
- def forward(self, x, mask_matrix):
- """ Forward function.
- Args:
- x: Input feature, tensor size (B, H*W, C).
- H, W: Spatial resolution of the input feature.
- mask_matrix: Attention mask for cyclic shift.
- """
- B, L, C = x.shape
- H, W = self.H, self.W
- assert L == H * W, "input feature has wrong size"
- shortcut = x
- x = self.norm1(x)
- x = x.reshape([B, H, W, C])
- # pad feature maps to multiples of window size
- pad_l = pad_t = 0
- pad_r = (self.window_size - W % self.window_size) % self.window_size
- pad_b = (self.window_size - H % self.window_size) % self.window_size
- x = F.pad(x, [0, pad_l, 0, pad_b, 0, pad_r, 0, pad_t])
- _, Hp, Wp, _ = x.shape
- # cyclic shift
- if self.shift_size > 0:
- shifted_x = paddle.roll(
- x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))
- attn_mask = mask_matrix
- else:
- shifted_x = x
- attn_mask = None
- # partition windows
- x_windows = window_partition(
- shifted_x, self.window_size) # nW*B, window_size, window_size, C
- x_windows = x_windows.reshape(
- [-1, self.window_size * self.window_size,
- C]) # nW*B, window_size*window_size, C
- # W-MSA/SW-MSA
- attn_windows = self.attn(
- x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
- # merge windows
- attn_windows = attn_windows.reshape(
- [-1, self.window_size, self.window_size, C])
- shifted_x = window_reverse(attn_windows, self.window_size, Hp,
- Wp) # B H' W' C
- # reverse cyclic shift
- if self.shift_size > 0:
- x = paddle.roll(
- shifted_x,
- shifts=(self.shift_size, self.shift_size),
- axis=(1, 2))
- else:
- x = shifted_x
- if pad_r > 0 or pad_b > 0:
- x = x[:, :H, :W, :]
- x = x.reshape([B, H * W, C])
- # FFN
- x = shortcut + self.drop_path(x)
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
- class PatchMerging(nn.Layer):
- r""" Patch Merging Layer.
- Args:
- dim (int): Number of input channels.
- norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
- """
- def __init__(self, dim, norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
- self.norm = norm_layer(4 * dim)
- def forward(self, x, H, W):
- """ Forward function.
- Args:
- x: Input feature, tensor size (B, H*W, C).
- H, W: Spatial resolution of the input feature.
- """
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- x = x.reshape([B, H, W, C])
- # padding
- pad_input = (H % 2 == 1) or (W % 2 == 1)
- if pad_input:
- x = F.pad(x, [0, 0, 0, W % 2, 0, H % 2])
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
- x = paddle.concat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
- x = x.reshape([B, H * W // 4, 4 * C]) # B H/2*W/2 4*C
- x = self.norm(x)
- x = self.reduction(x)
- return x
- class BasicLayer(nn.Layer):
- """ A basic Swin Transformer layer for one stage.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resolution.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None
- """
- def __init__(self,
- dim,
- depth,
- num_heads,
- window_size=7,
- mlp_ratio=4.,
- qkv_bias=True,
- qk_scale=None,
- drop=0.,
- attn_drop=0.,
- drop_path=0.,
- norm_layer=nn.LayerNorm,
- downsample=None):
- super().__init__()
- self.window_size = window_size
- self.shift_size = window_size // 2
- self.depth = depth
- # build blocks
- self.blocks = nn.LayerList([
- SwinTransformerBlock(
- dim=dim,
- num_heads=num_heads,
- window_size=window_size,
- shift_size=0 if (i % 2 == 0) else window_size // 2,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop,
- attn_drop=attn_drop,
- drop_path=drop_path[i]
- if isinstance(drop_path, np.ndarray) else drop_path,
- norm_layer=norm_layer) for i in range(depth)
- ])
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(dim=dim, norm_layer=norm_layer)
- else:
- self.downsample = None
- def forward(self, x, H, W):
- """ Forward function.
- Args:
- x: Input feature, tensor size (B, H*W, C).
- H, W: Spatial resolution of the input feature.
- """
- # calculate attention mask for SW-MSA
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
- img_mask = paddle.fluid.layers.zeros(
- [1, Hp, Wp, 1], dtype='float32') # 1 Hp Wp 1
- h_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- w_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- try:
- img_mask[:, h, w, :] = cnt
- except:
- pass
- cnt += 1
- mask_windows = window_partition(
- img_mask, self.window_size) # nW, window_size, window_size, 1
- mask_windows = mask_windows.reshape(
- [-1, self.window_size * self.window_size])
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
- huns = -100.0 * paddle.ones_like(attn_mask)
- attn_mask = huns * (attn_mask != 0).astype("float32")
- for blk in self.blocks:
- blk.H, blk.W = H, W
- x = blk(x, attn_mask)
- if self.downsample is not None:
- x_down = self.downsample(x, H, W)
- Wh, Ww = (H + 1) // 2, (W + 1) // 2
- return x, H, W, x_down, Wh, Ww
- else:
- return x, H, W, x, H, W
- class PatchEmbed(nn.Layer):
- """ Image to Patch Embedding
- Args:
- patch_size (int): Patch token size. Default: 4.
- in_chans (int): Number of input image channels. Default: 3.
- embed_dim (int): Number of linear projection output channels. Default: 96.
- norm_layer (nn.Layer, optional): Normalization layer. Default: None
- """
- def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
- super().__init__()
- patch_size = to_2tuple(patch_size)
- self.patch_size = patch_size
- self.in_chans = in_chans
- self.embed_dim = embed_dim
- self.proj = nn.Conv2D(
- in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
- if norm_layer is not None:
- self.norm = norm_layer(embed_dim)
- else:
- self.norm = None
- def forward(self, x):
- B, C, H, W = x.shape
- # assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1])
- if W % self.patch_size[1] != 0:
- x = F.pad(x, [0, self.patch_size[1] - W % self.patch_size[1], 0, 0])
- if H % self.patch_size[0] != 0:
- x = F.pad(x, [0, 0, 0, self.patch_size[0] - H % self.patch_size[0]])
- x = self.proj(x)
- if self.norm is not None:
- _, _, Wh, Ww = x.shape
- x = x.flatten(2).transpose([0, 2, 1])
- x = self.norm(x)
- x = x.transpose([0, 2, 1]).reshape([-1, self.embed_dim, Wh, Ww])
- return x
- @register
- @serializable
- class SwinTransformer(nn.Layer):
- """ Swin Transformer
- A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
- https://arxiv.org/pdf/2103.14030
- Args:
- img_size (int | tuple(int)): Input image size. Default 224
- patch_size (int | tuple(int)): Patch size. Default: 4
- in_chans (int): Number of input image channels. Default: 3
- num_classes (int): Number of classes for classification head. Default: 1000
- embed_dim (int): Patch embedding dimension. Default: 96
- depths (tuple(int)): Depth of each Swin Transformer layer.
- num_heads (tuple(int)): Number of attention heads in different layers.
- window_size (int): Window size. Default: 7
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
- drop_rate (float): Dropout rate. Default: 0
- attn_drop_rate (float): Attention dropout rate. Default: 0
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
- norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
- """
- def __init__(self,
- pretrain_img_size=224,
- patch_size=4,
- in_chans=3,
- embed_dim=96,
- depths=[2, 2, 6, 2],
- num_heads=[3, 6, 12, 24],
- window_size=7,
- mlp_ratio=4.,
- qkv_bias=True,
- qk_scale=None,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.2,
- norm_layer=nn.LayerNorm,
- ape=False,
- patch_norm=True,
- out_indices=(0, 1, 2, 3),
- frozen_stages=-1,
- pretrained=None):
- super(SwinTransformer, self).__init__()
- self.pretrain_img_size = pretrain_img_size
- self.num_layers = len(depths)
- self.embed_dim = embed_dim
- self.ape = ape
- self.patch_norm = patch_norm
- self.out_indices = out_indices
- self.frozen_stages = frozen_stages
- # split image into non-overlapping patches
- self.patch_embed = PatchEmbed(
- patch_size=patch_size,
- in_chans=in_chans,
- embed_dim=embed_dim,
- norm_layer=norm_layer if self.patch_norm else None)
- # absolute position embedding
- if self.ape:
- pretrain_img_size = to_2tuple(pretrain_img_size)
- patch_size = to_2tuple(patch_size)
- patches_resolution = [
- pretrain_img_size[0] // patch_size[0],
- pretrain_img_size[1] // patch_size[1]
- ]
- self.absolute_pos_embed = add_parameter(
- self,
- paddle.zeros((1, embed_dim, patches_resolution[0],
- patches_resolution[1])))
- trunc_normal_(self.absolute_pos_embed)
- self.pos_drop = nn.Dropout(p=drop_rate)
- # stochastic depth
- dpr = np.linspace(0, drop_path_rate,
- sum(depths)) # stochastic depth decay rule
- # build layers
- self.layers = nn.LayerList()
- for i_layer in range(self.num_layers):
- layer = BasicLayer(
- dim=int(embed_dim * 2**i_layer),
- depth=depths[i_layer],
- num_heads=num_heads[i_layer],
- window_size=window_size,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchMerging
- if (i_layer < self.num_layers - 1) else None)
- self.layers.append(layer)
- num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
- self.num_features = num_features
- # add a norm layer for each output
- for i_layer in out_indices:
- layer = norm_layer(num_features[i_layer])
- layer_name = f'norm{i_layer}'
- self.add_sublayer(layer_name, layer)
- self.apply(self._init_weights)
- self._freeze_stages()
- if pretrained:
- if 'http' in pretrained: #URL
- path = paddle.utils.download.get_weights_path_from_url(
- pretrained)
- else: #model in local path
- path = pretrained
- self.set_state_dict(paddle.load(path))
- def _freeze_stages(self):
- if self.frozen_stages >= 0:
- self.patch_embed.eval()
- for param in self.patch_embed.parameters():
- param.stop_gradient = True
- if self.frozen_stages >= 1 and self.ape:
- self.absolute_pos_embed.stop_gradient = True
- if self.frozen_stages >= 2:
- self.pos_drop.eval()
- for i in range(0, self.frozen_stages - 1):
- m = self.layers[i]
- m.eval()
- for param in m.parameters():
- param.stop_gradient = True
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight)
- if isinstance(m, nn.Linear) and m.bias is not None:
- zeros_(m.bias)
- elif isinstance(m, nn.LayerNorm):
- zeros_(m.bias)
- ones_(m.weight)
- def forward(self, x):
- """Forward function."""
- x = self.patch_embed(x['image'])
- _, _, Wh, Ww = x.shape
- if self.ape:
- # interpolate the position embedding to the corresponding size
- absolute_pos_embed = F.interpolate(
- self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
- x = (x + absolute_pos_embed).flatten(2).transpose([0, 2, 1])
- else:
- x = x.flatten(2).transpose([0, 2, 1])
- x = self.pos_drop(x)
- outs = []
- for i in range(self.num_layers):
- layer = self.layers[i]
- x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
- if i in self.out_indices:
- norm_layer = getattr(self, f'norm{i}')
- x_out = norm_layer(x_out)
- out = x_out.reshape((-1, H, W, self.num_features[i])).transpose(
- (0, 3, 1, 2))
- outs.append(out)
- return tuple(outs)
- @property
- def out_shape(self):
- out_strides = [4, 8, 16, 32]
- return [
- ShapeSpec(
- channels=self.num_features[i], stride=out_strides[i])
- for i in self.out_indices
- ]
|