123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle.nn as nn
- from ppdet.core.workspace import register, serializable
- from .resnet import ResNet, Blocks, BasicBlock, BottleNeck
- __all__ = ['SENet', 'SERes5Head']
- @register
- @serializable
- class SENet(ResNet):
- __shared__ = ['norm_type']
- def __init__(self,
- depth=50,
- variant='b',
- lr_mult_list=[1.0, 1.0, 1.0, 1.0],
- groups=1,
- base_width=64,
- norm_type='bn',
- norm_decay=0,
- freeze_norm=True,
- freeze_at=0,
- return_idx=[0, 1, 2, 3],
- dcn_v2_stages=[-1],
- std_senet=True,
- num_stages=4):
- """
- Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
-
- Args:
- depth (int): SENet depth, should be 50, 101, 152
- variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
- lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
- lower learning rate ratio is need for pretrained model
- got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
- groups (int): group convolution cardinality
- base_width (int): base width of each group convolution
- norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
- norm_decay (float): weight decay for normalization layer weights
- freeze_norm (bool): freeze normalization layers
- freeze_at (int): freeze the backbone at which stage
- return_idx (list): index of the stages whose feature maps are returned
- dcn_v2_stages (list): index of stages who select deformable conv v2
- std_senet (bool): whether use senet, default True
- num_stages (int): total num of stages
- """
- super(SENet, self).__init__(
- depth=depth,
- variant=variant,
- lr_mult_list=lr_mult_list,
- ch_in=128,
- groups=groups,
- base_width=base_width,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- freeze_at=freeze_at,
- return_idx=return_idx,
- dcn_v2_stages=dcn_v2_stages,
- std_senet=std_senet,
- num_stages=num_stages)
- @register
- class SERes5Head(nn.Layer):
- def __init__(self,
- depth=50,
- variant='b',
- lr_mult=1.0,
- groups=1,
- base_width=64,
- norm_type='bn',
- norm_decay=0,
- dcn_v2=False,
- freeze_norm=False,
- std_senet=True):
- """
- SERes5Head layer
- Args:
- depth (int): SENet depth, should be 50, 101, 152
- variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
- lr_mult (list): learning rate ratio of SERes5Head, default as 1.0.
- groups (int): group convolution cardinality
- base_width (int): base width of each group convolution
- norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
- norm_decay (float): weight decay for normalization layer weights
- dcn_v2_stages (list): index of stages who select deformable conv v2
- std_senet (bool): whether use senet, default True
-
- """
- super(SERes5Head, self).__init__()
- ch_out = 512
- ch_in = 256 if depth < 50 else 1024
- na = NameAdapter(self)
- block = BottleNeck if depth >= 50 else BasicBlock
- self.res5 = Blocks(
- block,
- ch_in,
- ch_out,
- count=3,
- name_adapter=na,
- stage_num=5,
- variant=variant,
- groups=groups,
- base_width=base_width,
- lr=lr_mult,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- dcn_v2=dcn_v2,
- std_senet=std_senet)
- self.ch_out = ch_out * block.expansion
- @property
- def out_shape(self):
- return [ShapeSpec(
- channels=self.ch_out,
- stride=16, )]
- def forward(self, roi_feat):
- y = self.res5(roi_feat)
- return y
|