123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm
- from paddle.nn.initializer import KaimingNormal
- from paddle.regularizer import L2Decay
- from ppdet.core.workspace import register, serializable
- from numbers import Integral
- from ..shape_spec import ShapeSpec
- from ppdet.modeling.ops import channel_shuffle
- from ppdet.modeling.backbones.shufflenet_v2 import ConvBNLayer
- __all__ = ['ESNet']
- def make_divisible(v, divisor=16, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- class SEModule(nn.Layer):
- def __init__(self, channel, reduction=4):
- super(SEModule, self).__init__()
- self.avg_pool = AdaptiveAvgPool2D(1)
- self.conv1 = Conv2D(
- in_channels=channel,
- out_channels=channel // reduction,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(),
- bias_attr=ParamAttr())
- self.conv2 = Conv2D(
- in_channels=channel // reduction,
- out_channels=channel,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(),
- bias_attr=ParamAttr())
- def forward(self, inputs):
- outputs = self.avg_pool(inputs)
- outputs = self.conv1(outputs)
- outputs = F.relu(outputs)
- outputs = self.conv2(outputs)
- outputs = F.hardsigmoid(outputs)
- return paddle.multiply(x=inputs, y=outputs)
- class InvertedResidual(nn.Layer):
- def __init__(self,
- in_channels,
- mid_channels,
- out_channels,
- stride,
- act="relu"):
- super(InvertedResidual, self).__init__()
- self._conv_pw = ConvBNLayer(
- in_channels=in_channels // 2,
- out_channels=mid_channels // 2,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- act=act)
- self._conv_dw = ConvBNLayer(
- in_channels=mid_channels // 2,
- out_channels=mid_channels // 2,
- kernel_size=3,
- stride=stride,
- padding=1,
- groups=mid_channels // 2,
- act=None)
- self._se = SEModule(mid_channels)
- self._conv_linear = ConvBNLayer(
- in_channels=mid_channels,
- out_channels=out_channels // 2,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- act=act)
- def forward(self, inputs):
- x1, x2 = paddle.split(
- inputs,
- num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
- axis=1)
- x2 = self._conv_pw(x2)
- x3 = self._conv_dw(x2)
- x3 = paddle.concat([x2, x3], axis=1)
- x3 = self._se(x3)
- x3 = self._conv_linear(x3)
- out = paddle.concat([x1, x3], axis=1)
- return channel_shuffle(out, 2)
- class InvertedResidualDS(nn.Layer):
- def __init__(self,
- in_channels,
- mid_channels,
- out_channels,
- stride,
- act="relu"):
- super(InvertedResidualDS, self).__init__()
- # branch1
- self._conv_dw_1 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- stride=stride,
- padding=1,
- groups=in_channels,
- act=None)
- self._conv_linear_1 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels // 2,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- act=act)
- # branch2
- self._conv_pw_2 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=mid_channels // 2,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- act=act)
- self._conv_dw_2 = ConvBNLayer(
- in_channels=mid_channels // 2,
- out_channels=mid_channels // 2,
- kernel_size=3,
- stride=stride,
- padding=1,
- groups=mid_channels // 2,
- act=None)
- self._se = SEModule(mid_channels // 2)
- self._conv_linear_2 = ConvBNLayer(
- in_channels=mid_channels // 2,
- out_channels=out_channels // 2,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- act=act)
- self._conv_dw_mv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- groups=out_channels,
- act="hard_swish")
- self._conv_pw_mv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- act="hard_swish")
- def forward(self, inputs):
- x1 = self._conv_dw_1(inputs)
- x1 = self._conv_linear_1(x1)
- x2 = self._conv_pw_2(inputs)
- x2 = self._conv_dw_2(x2)
- x2 = self._se(x2)
- x2 = self._conv_linear_2(x2)
- out = paddle.concat([x1, x2], axis=1)
- out = self._conv_dw_mv1(out)
- out = self._conv_pw_mv1(out)
- return out
- @register
- @serializable
- class ESNet(nn.Layer):
- def __init__(self,
- scale=1.0,
- act="hard_swish",
- feature_maps=[4, 11, 14],
- channel_ratio=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]):
- super(ESNet, self).__init__()
- self.scale = scale
- if isinstance(feature_maps, Integral):
- feature_maps = [feature_maps]
- self.feature_maps = feature_maps
- stage_repeats = [3, 7, 3]
- stage_out_channels = [
- -1, 24, make_divisible(128 * scale), make_divisible(256 * scale),
- make_divisible(512 * scale), 1024
- ]
- self._out_channels = []
- self._feature_idx = 0
- # 1. conv1
- self._conv1 = ConvBNLayer(
- in_channels=3,
- out_channels=stage_out_channels[1],
- kernel_size=3,
- stride=2,
- padding=1,
- act=act)
- self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
- self._feature_idx += 1
- # 2. bottleneck sequences
- self._block_list = []
- arch_idx = 0
- for stage_id, num_repeat in enumerate(stage_repeats):
- for i in range(num_repeat):
- channels_scales = channel_ratio[arch_idx]
- mid_c = make_divisible(
- int(stage_out_channels[stage_id + 2] * channels_scales),
- divisor=8)
- if i == 0:
- block = self.add_sublayer(
- name=str(stage_id + 2) + '_' + str(i + 1),
- sublayer=InvertedResidualDS(
- in_channels=stage_out_channels[stage_id + 1],
- mid_channels=mid_c,
- out_channels=stage_out_channels[stage_id + 2],
- stride=2,
- act=act))
- else:
- block = self.add_sublayer(
- name=str(stage_id + 2) + '_' + str(i + 1),
- sublayer=InvertedResidual(
- in_channels=stage_out_channels[stage_id + 2],
- mid_channels=mid_c,
- out_channels=stage_out_channels[stage_id + 2],
- stride=1,
- act=act))
- self._block_list.append(block)
- arch_idx += 1
- self._feature_idx += 1
- self._update_out_channels(stage_out_channels[stage_id + 2],
- self._feature_idx, self.feature_maps)
- def _update_out_channels(self, channel, feature_idx, feature_maps):
- if feature_idx in feature_maps:
- self._out_channels.append(channel)
- def forward(self, inputs):
- y = self._conv1(inputs['image'])
- y = self._max_pool(y)
- outs = []
- for i, inv in enumerate(self._block_list):
- y = inv(y)
- if i + 2 in self.feature_maps:
- outs.append(y)
- return outs
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
|