123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register, serializable
- from ppdet.modeling.ops import batch_norm, mish
- from ..shape_spec import ShapeSpec
- __all__ = ['DarkNet', 'ConvBNLayer']
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- filter_size=3,
- stride=1,
- groups=1,
- padding=0,
- norm_type='bn',
- norm_decay=0.,
- act="leaky",
- freeze_norm=False,
- data_format='NCHW',
- name=''):
- """
- conv + bn + activation layer
- Args:
- ch_in (int): input channel
- ch_out (int): output channel
- filter_size (int): filter size, default 3
- stride (int): stride, default 1
- groups (int): number of groups of conv layer, default 1
- padding (int): padding size, default 0
- norm_type (str): batch norm type, default bn
- norm_decay (str): decay for weight and bias of batch norm layer, default 0.
- act (str): activation function type, default 'leaky', which means leaky_relu
- freeze_norm (bool): whether to freeze norm, default False
- data_format (str): data format, NCHW or NHWC
- """
- super(ConvBNLayer, self).__init__()
- self.conv = nn.Conv2D(
- in_channels=ch_in,
- out_channels=ch_out,
- kernel_size=filter_size,
- stride=stride,
- padding=padding,
- groups=groups,
- data_format=data_format,
- bias_attr=False)
- self.batch_norm = batch_norm(
- ch_out,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- self.act = act
- def forward(self, inputs):
- out = self.conv(inputs)
- out = self.batch_norm(out)
- if self.act == 'leaky':
- out = F.leaky_relu(out, 0.1)
- else:
- out = getattr(F, self.act)(out)
- return out
- class DownSample(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- filter_size=3,
- stride=2,
- padding=1,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- data_format='NCHW'):
- """
- downsample layer
- Args:
- ch_in (int): input channel
- ch_out (int): output channel
- filter_size (int): filter size, default 3
- stride (int): stride, default 2
- padding (int): padding size, default 1
- norm_type (str): batch norm type, default bn
- norm_decay (str): decay for weight and bias of batch norm layer, default 0.
- freeze_norm (bool): whether to freeze norm, default False
- data_format (str): data format, NCHW or NHWC
- """
- super(DownSample, self).__init__()
- self.conv_bn_layer = ConvBNLayer(
- ch_in=ch_in,
- ch_out=ch_out,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- self.ch_out = ch_out
- def forward(self, inputs):
- out = self.conv_bn_layer(inputs)
- return out
- class BasicBlock(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- data_format='NCHW'):
- """
- BasicBlock layer of DarkNet
- Args:
- ch_in (int): input channel
- ch_out (int): output channel
- norm_type (str): batch norm type, default bn
- norm_decay (str): decay for weight and bias of batch norm layer, default 0.
- freeze_norm (bool): whether to freeze norm, default False
- data_format (str): data format, NCHW or NHWC
- """
- super(BasicBlock, self).__init__()
- assert ch_in == ch_out and (ch_in % 2) == 0, \
- f"ch_in and ch_out should be the same even int, but the input \'ch_in is {ch_in}, \'ch_out is {ch_out}"
- # example:
- # --------------{conv1} --> {conv2}
- # channel route: 10-->5 --> 5-->10
- self.conv1 = ConvBNLayer(
- ch_in=ch_in,
- ch_out=int(ch_out / 2),
- filter_size=1,
- stride=1,
- padding=0,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- self.conv2 = ConvBNLayer(
- ch_in=int(ch_out / 2),
- ch_out=ch_out,
- filter_size=3,
- stride=1,
- padding=1,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- def forward(self, inputs):
- conv1 = self.conv1(inputs)
- conv2 = self.conv2(conv1)
- out = paddle.add(x=inputs, y=conv2)
- return out
- class Blocks(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- count,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- name=None,
- data_format='NCHW'):
- """
- Blocks layer, which consist of some BaickBlock layers
- Args:
- ch_in (int): input channel
- ch_out (int): output channel
- count (int): number of BasicBlock layer
- norm_type (str): batch norm type, default bn
- norm_decay (str): decay for weight and bias of batch norm layer, default 0.
- freeze_norm (bool): whether to freeze norm, default False
- name (str): layer name
- data_format (str): data format, NCHW or NHWC
- """
- super(Blocks, self).__init__()
- self.basicblock0 = BasicBlock(
- ch_in,
- ch_out,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- self.res_out_list = []
- for i in range(1, count):
- block_name = '{}.{}'.format(name, i)
- res_out = self.add_sublayer(
- block_name,
- BasicBlock(
- ch_out,
- ch_out,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format))
- self.res_out_list.append(res_out)
- self.ch_out = ch_out
- def forward(self, inputs):
- y = self.basicblock0(inputs)
- for basic_block_i in self.res_out_list:
- y = basic_block_i(y)
- return y
- DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
- @register
- @serializable
- class DarkNet(nn.Layer):
- __shared__ = ['norm_type', 'data_format']
- def __init__(self,
- depth=53,
- freeze_at=-1,
- return_idx=[2, 3, 4],
- num_stages=5,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- data_format='NCHW'):
- """
- Darknet, see https://pjreddie.com/darknet/yolo/
- Args:
- depth (int): depth of network
- freeze_at (int): freeze the backbone at which stage
- filter_size (int): filter size, default 3
- return_idx (list): index of stages whose feature maps are returned
- norm_type (str): batch norm type, default bn
- norm_decay (str): decay for weight and bias of batch norm layer, default 0.
- data_format (str): data format, NCHW or NHWC
- """
- super(DarkNet, self).__init__()
- self.depth = depth
- self.freeze_at = freeze_at
- self.return_idx = return_idx
- self.num_stages = num_stages
- self.stages = DarkNet_cfg[self.depth][0:num_stages]
- self.conv0 = ConvBNLayer(
- ch_in=3,
- ch_out=32,
- filter_size=3,
- stride=1,
- padding=1,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- self.downsample0 = DownSample(
- ch_in=32,
- ch_out=32 * 2,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format)
- self._out_channels = []
- self.darknet_conv_block_list = []
- self.downsample_list = []
- ch_in = [64, 128, 256, 512, 1024]
- for i, stage in enumerate(self.stages):
- name = 'stage.{}'.format(i)
- conv_block = self.add_sublayer(
- name,
- Blocks(
- int(ch_in[i]),
- int(ch_in[i]),
- stage,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name))
- self.darknet_conv_block_list.append(conv_block)
- if i in return_idx:
- self._out_channels.append(int(ch_in[i]))
- for i in range(num_stages - 1):
- down_name = 'stage.{}.downsample'.format(i)
- downsample = self.add_sublayer(
- down_name,
- DownSample(
- ch_in=int(ch_in[i]),
- ch_out=int(ch_in[i + 1]),
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- data_format=data_format))
- self.downsample_list.append(downsample)
- def forward(self, inputs):
- x = inputs['image']
- out = self.conv0(x)
- out = self.downsample0(out)
- blocks = []
- for i, conv_block_i in enumerate(self.darknet_conv_block_list):
- out = conv_block_i(out)
- if i == self.freeze_at:
- out.stop_gradient = True
- if i in self.return_idx:
- blocks.append(out)
- if i < self.num_stages - 1:
- out = self.downsample_list[i](out)
- return blocks
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
|