123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- import random
- import paddle
- import paddle.nn.functional as F
- import paddle.distributed as dist
- from ppdet.modeling.ops import paddle_distributed_is_initialized
- __all__ = ['YOLOX']
- @register
- class YOLOX(BaseArch):
- """
- YOLOX network, see https://arxiv.org/abs/2107.08430
- Args:
- backbone (nn.Layer): backbone instance
- neck (nn.Layer): neck instance
- head (nn.Layer): head instance
- for_mot (bool): whether used for MOT or not
- input_size (list[int]): initial scale, will be reset by self._preprocess()
- size_stride (int): stride of the size range
- size_range (list[int]): multi-scale range for training
- random_interval (int): interval of iter to change self._input_size
- """
- __category__ = 'architecture'
- def __init__(self,
- backbone='CSPDarkNet',
- neck='YOLOCSPPAN',
- head='YOLOXHead',
- for_mot=False,
- input_size=[640, 640],
- size_stride=32,
- size_range=[15, 25],
- random_interval=10):
- super(YOLOX, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.head = head
- self.for_mot = for_mot
- self.input_size = input_size
- self._input_size = paddle.to_tensor(input_size)
- self.size_stride = size_stride
- self.size_range = size_range
- self.random_interval = random_interval
- self._step = 0
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # fpn
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- # head
- kwargs = {'input_shape': neck.out_shape}
- head = create(cfg['head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "head": head,
- }
- def _forward(self):
- if self.training:
- self._preprocess()
- body_feats = self.backbone(self.inputs)
- neck_feats = self.neck(body_feats, self.for_mot)
- if self.training:
- yolox_losses = self.head(neck_feats, self.inputs)
- yolox_losses.update({'size': self._input_size[0]})
- return yolox_losses
- else:
- head_outs = self.head(neck_feats)
- bbox, bbox_num = self.head.post_process(
- head_outs, self.inputs['im_shape'], self.inputs['scale_factor'])
- return {'bbox': bbox, 'bbox_num': bbox_num}
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
- def _preprocess(self):
- # YOLOX multi-scale training, interpolate resize before inputs of the network.
- self._get_size()
- scale_y = self._input_size[0] / self.input_size[0]
- scale_x = self._input_size[1] / self.input_size[1]
- if scale_x != 1 or scale_y != 1:
- self.inputs['image'] = F.interpolate(
- self.inputs['image'],
- size=self._input_size,
- mode='bilinear',
- align_corners=False)
- gt_bboxes = self.inputs['gt_bbox']
- for i in range(len(gt_bboxes)):
- if len(gt_bboxes[i]) > 0:
- gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x
- gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y
- self.inputs['gt_bbox'] = gt_bboxes
- def _get_size(self):
- # random_interval = 10 as default, every 10 iters to change self._input_size
- image_ratio = self.input_size[1] * 1.0 / self.input_size[0]
- if self._step % self.random_interval == 0:
- size_factor = random.randint(*self.size_range)
- size = [
- self.size_stride * size_factor,
- self.size_stride * int(size_factor * image_ratio)
- ]
- self._input_size = paddle.to_tensor(size)
- self._step += 1
|