123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ["SparseRCNN"]
- @register
- class SparseRCNN(BaseArch):
- __category__ = 'architecture'
- __inject__ = ["postprocess"]
- def __init__(self,
- backbone,
- neck,
- head="SparsercnnHead",
- postprocess="SparsePostProcess"):
- super(SparseRCNN, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.head = head
- self.postprocess = postprocess
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- kwargs = {'roi_input_shape': neck.out_shape}
- head = create(cfg['head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "head": head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- fpn_feats = self.neck(body_feats)
- head_outs = self.head(fpn_feats, self.inputs["img_whwh"])
- if not self.training:
- bboxes = self.postprocess(
- head_outs["pred_logits"], head_outs["pred_boxes"],
- self.inputs["scale_factor_wh"], self.inputs["img_whwh"])
- return bboxes
- else:
- return head_outs
- def get_loss(self):
- batch_gt_class = self.inputs["gt_class"]
- batch_gt_box = self.inputs["gt_bbox"]
- batch_whwh = self.inputs["img_whwh"]
- targets = []
- for i in range(len(batch_gt_class)):
- boxes = batch_gt_box[i]
- labels = batch_gt_class[i].squeeze(-1)
- img_whwh = batch_whwh[i]
- img_whwh_tgt = img_whwh.unsqueeze(0).tile([int(boxes.shape[0]), 1])
- targets.append({
- "boxes": boxes,
- "labels": labels,
- "img_whwh": img_whwh,
- "img_whwh_tgt": img_whwh_tgt
- })
- outputs = self._forward()
- loss_dict = self.head.get_loss(outputs, targets)
- acc = loss_dict["acc"]
- loss_dict.pop("acc")
- total_loss = sum(loss_dict.values())
- loss_dict.update({"loss": total_loss, "acc": acc})
- return loss_dict
- def get_pred(self):
- bbox_pred, bbox_num = self._forward()
- output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
- return output
|