123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from scipy.optimize import linear_sum_assignment
- from collections import abc, defaultdict
- import numpy as np
- import paddle
- from ppdet.core.workspace import register, create, serializable
- from .meta_arch import BaseArch
- from .. import layers as L
- from ..keypoint_utils import transpred
- __all__ = ['HigherHRNet']
- @register
- class HigherHRNet(BaseArch):
- __category__ = 'architecture'
- def __init__(self,
- backbone='HRNet',
- hrhrnet_head='HrHRNetHead',
- post_process='HrHRNetPostProcess',
- eval_flip=True,
- flip_perm=None,
- max_num_people=30):
- """
- HigherHRNet network, see https://arxiv.org/abs/1908.10357;
- HigherHRNet+swahr, see https://arxiv.org/abs/2012.15175
- Args:
- backbone (nn.Layer): backbone instance
- hrhrnet_head (nn.Layer): keypoint_head instance
- bbox_post_process (object): `BBoxPostProcess` instance
- """
- super(HigherHRNet, self).__init__()
- self.backbone = backbone
- self.hrhrnet_head = hrhrnet_head
- self.post_process = post_process
- self.flip = eval_flip
- self.flip_perm = paddle.to_tensor(flip_perm)
- self.deploy = False
- self.interpolate = L.Upsample(2, mode='bilinear')
- self.pool = L.MaxPool(5, 1, 2)
- self.max_num_people = max_num_people
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # head
- kwargs = {'input_shape': backbone.out_shape}
- hrhrnet_head = create(cfg['hrhrnet_head'], **kwargs)
- post_process = create(cfg['post_process'])
- return {
- 'backbone': backbone,
- "hrhrnet_head": hrhrnet_head,
- "post_process": post_process,
- }
- def _forward(self):
- if self.flip and not self.training and not self.deploy:
- self.inputs['image'] = paddle.concat(
- (self.inputs['image'], paddle.flip(self.inputs['image'], [3])))
- body_feats = self.backbone(self.inputs)
- if self.training:
- return self.hrhrnet_head(body_feats, self.inputs)
- else:
- outputs = self.hrhrnet_head(body_feats)
- if self.flip and not self.deploy:
- outputs = [paddle.split(o, 2) for o in outputs]
- output_rflip = [
- paddle.flip(paddle.gather(o[1], self.flip_perm, 1), [3])
- for o in outputs
- ]
- output1 = [o[0] for o in outputs]
- heatmap = (output1[0] + output_rflip[0]) / 2.
- tagmaps = [output1[1], output_rflip[1]]
- outputs = [heatmap] + tagmaps
- outputs = self.get_topk(outputs)
- if self.deploy:
- return outputs
- res_lst = []
- h = self.inputs['im_shape'][0, 0].numpy().item()
- w = self.inputs['im_shape'][0, 1].numpy().item()
- kpts, scores = self.post_process(*outputs, h, w)
- res_lst.append([kpts, scores])
- return res_lst
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- outputs = {}
- res_lst = self._forward()
- outputs['keypoint'] = res_lst
- return outputs
- def get_topk(self, outputs):
- # resize to image size
- outputs = [self.interpolate(x) for x in outputs]
- if len(outputs) == 3:
- tagmap = paddle.concat(
- (outputs[1].unsqueeze(4), outputs[2].unsqueeze(4)), axis=4)
- else:
- tagmap = outputs[1].unsqueeze(4)
- heatmap = outputs[0]
- N, J = 1, self.hrhrnet_head.num_joints
- heatmap_maxpool = self.pool(heatmap)
- # topk
- maxmap = heatmap * (heatmap == heatmap_maxpool)
- maxmap = maxmap.reshape([N, J, -1])
- heat_k, inds_k = maxmap.topk(self.max_num_people, axis=2)
- outputs = [heatmap, tagmap, heat_k, inds_k]
- return outputs
- @register
- @serializable
- class HrHRNetPostProcess(object):
- '''
- HrHRNet postprocess contain:
- 1) get topk keypoints in the output heatmap
- 2) sample the tagmap's value corresponding to each of the topk coordinate
- 3) match different joints to combine to some people with Hungary algorithm
- 4) adjust the coordinate by +-0.25 to decrease error std
- 5) salvage missing joints by check positivity of heatmap - tagdiff_norm
- Args:
- max_num_people (int): max number of people support in postprocess
- heat_thresh (float): value of topk below this threshhold will be ignored
- tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
- inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
- original_height, original_width (float): the original image size
- '''
- def __init__(self, max_num_people=30, heat_thresh=0.1, tag_thresh=1.):
- self.max_num_people = max_num_people
- self.heat_thresh = heat_thresh
- self.tag_thresh = tag_thresh
- def lerp(self, j, y, x, heatmap):
- H, W = heatmap.shape[-2:]
- left = np.clip(x - 1, 0, W - 1)
- right = np.clip(x + 1, 0, W - 1)
- up = np.clip(y - 1, 0, H - 1)
- down = np.clip(y + 1, 0, H - 1)
- offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
- -0.25)
- offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
- -0.25)
- return offset_y + 0.5, offset_x + 0.5
- def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
- original_width):
- N, J, H, W = heatmap.shape
- assert N == 1, "only support batch size 1"
- heatmap = heatmap[0].cpu().detach().numpy()
- tagmap = tagmap[0].cpu().detach().numpy()
- heats = heat_k[0].cpu().detach().numpy()
- inds_np = inds_k[0].cpu().detach().numpy()
- y = inds_np // W
- x = inds_np % W
- tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
- y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
- coords = np.stack((y, x), axis=2)
- # threshold
- mask = heats > self.heat_thresh
- # cluster
- cluster = defaultdict(lambda: {
- 'coords': np.zeros((J, 2), dtype=np.float32),
- 'scores': np.zeros(J, dtype=np.float32),
- 'tags': []
- })
- for jid, m in enumerate(mask):
- num_valid = m.sum()
- if num_valid == 0:
- continue
- valid_inds = np.where(m)[0]
- valid_tags = tags[jid, m, :]
- if len(cluster) == 0: # initialize
- for i in valid_inds:
- tag = tags[jid, i]
- key = tag[0]
- cluster[key]['tags'].append(tag)
- cluster[key]['scores'][jid] = heats[jid, i]
- cluster[key]['coords'][jid] = coords[jid, i]
- continue
- candidates = list(cluster.keys())[:self.max_num_people]
- centroids = [
- np.mean(
- cluster[k]['tags'], axis=0) for k in candidates
- ]
- num_clusters = len(centroids)
- # shape is (num_valid, num_clusters, tag_dim)
- dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
- l2_dist = np.linalg.norm(dist, ord=2, axis=2)
- # modulate dist with heat value, see `use_detection_val`
- cost = np.round(l2_dist) * 100 - heats[jid, m, None]
- # pad the cost matrix, otherwise new pose are ignored
- if num_valid > num_clusters:
- cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
- 'constant',
- constant_values=((0, 0), (0, 1e-10)))
- rows, cols = linear_sum_assignment(cost)
- for y, x in zip(rows, cols):
- tag = tags[jid, y]
- if y < num_valid and x < num_clusters and \
- l2_dist[y, x] < self.tag_thresh:
- key = candidates[x] # merge to cluster
- else:
- key = tag[0] # initialize new cluster
- cluster[key]['tags'].append(tag)
- cluster[key]['scores'][jid] = heats[jid, y]
- cluster[key]['coords'][jid] = coords[jid, y]
- # shape is [k, J, 2] and [k, J]
- pose_tags = np.array([cluster[k]['tags'] for k in cluster])
- pose_coords = np.array([cluster[k]['coords'] for k in cluster])
- pose_scores = np.array([cluster[k]['scores'] for k in cluster])
- valid = pose_scores > 0
- pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
- if valid.sum() == 0:
- return pose_kpts, pose_kpts
- # refine coords
- valid_coords = pose_coords[valid].astype(np.int32)
- y = valid_coords[..., 0].flatten()
- x = valid_coords[..., 1].flatten()
- _, j = np.nonzero(valid)
- offsets = self.lerp(j, y, x, heatmap)
- pose_coords[valid, 0] += offsets[0]
- pose_coords[valid, 1] += offsets[1]
- # mean score before salvage
- mean_score = pose_scores.mean(axis=1)
- pose_kpts[valid, 2] = pose_scores[valid]
- # salvage missing joints
- if True:
- for pid, coords in enumerate(pose_coords):
- tag_mean = np.array(pose_tags[pid]).mean(axis=0)
- norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
- score = heatmap - np.round(norm) # (J, H, W)
- flat_score = score.reshape(J, -1)
- max_inds = np.argmax(flat_score, axis=1)
- max_scores = np.max(flat_score, axis=1)
- salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
- if salvage_joints.sum() == 0:
- continue
- y = max_inds[salvage_joints] // W
- x = max_inds[salvage_joints] % W
- offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
- y = y.astype(np.float32) + offsets[0]
- x = x.astype(np.float32) + offsets[1]
- pose_coords[pid][salvage_joints, 0] = y
- pose_coords[pid][salvage_joints, 1] = x
- pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
- pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
- original_height, original_width,
- min(H, W))
- return pose_kpts, mean_score
|