123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from scipy.optimize import linear_sum_assignment
- from collections import abc, defaultdict
- import cv2
- import numpy as np
- import math
- import paddle
- import paddle.nn as nn
- from keypoint_preprocess import get_affine_mat_kernel, get_affine_transform
- class HrHRNetPostProcess(object):
- """
- HrHRNet postprocess contain:
- 1) get topk keypoints in the output heatmap
- 2) sample the tagmap's value corresponding to each of the topk coordinate
- 3) match different joints to combine to some people with Hungary algorithm
- 4) adjust the coordinate by +-0.25 to decrease error std
- 5) salvage missing joints by check positivity of heatmap - tagdiff_norm
- Args:
- max_num_people (int): max number of people support in postprocess
- heat_thresh (float): value of topk below this threshhold will be ignored
- tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
- inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
- original_height, original_width (float): the original image size
- """
- def __init__(self, max_num_people=30, heat_thresh=0.2, tag_thresh=1.):
- self.max_num_people = max_num_people
- self.heat_thresh = heat_thresh
- self.tag_thresh = tag_thresh
- def lerp(self, j, y, x, heatmap):
- H, W = heatmap.shape[-2:]
- left = np.clip(x - 1, 0, W - 1)
- right = np.clip(x + 1, 0, W - 1)
- up = np.clip(y - 1, 0, H - 1)
- down = np.clip(y + 1, 0, H - 1)
- offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
- -0.25)
- offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
- -0.25)
- return offset_y + 0.5, offset_x + 0.5
- def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
- original_width):
- N, J, H, W = heatmap.shape
- assert N == 1, "only support batch size 1"
- heatmap = heatmap[0]
- tagmap = tagmap[0]
- heats = heat_k[0]
- inds_np = inds_k[0]
- y = inds_np // W
- x = inds_np % W
- tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
- y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
- coords = np.stack((y, x), axis=2)
- # threshold
- mask = heats > self.heat_thresh
- # cluster
- cluster = defaultdict(lambda: {
- 'coords': np.zeros((J, 2), dtype=np.float32),
- 'scores': np.zeros(J, dtype=np.float32),
- 'tags': []
- })
- for jid, m in enumerate(mask):
- num_valid = m.sum()
- if num_valid == 0:
- continue
- valid_inds = np.where(m)[0]
- valid_tags = tags[jid, m, :]
- if len(cluster) == 0: # initialize
- for i in valid_inds:
- tag = tags[jid, i]
- key = tag[0]
- cluster[key]['tags'].append(tag)
- cluster[key]['scores'][jid] = heats[jid, i]
- cluster[key]['coords'][jid] = coords[jid, i]
- continue
- candidates = list(cluster.keys())[:self.max_num_people]
- centroids = [
- np.mean(
- cluster[k]['tags'], axis=0) for k in candidates
- ]
- num_clusters = len(centroids)
- # shape is (num_valid, num_clusters, tag_dim)
- dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
- l2_dist = np.linalg.norm(dist, ord=2, axis=2)
- # modulate dist with heat value, see `use_detection_val`
- cost = np.round(l2_dist) * 100 - heats[jid, m, None]
- # pad the cost matrix, otherwise new pose are ignored
- if num_valid > num_clusters:
- cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
- 'constant',
- constant_values=((0, 0), (0, 1e-10)))
- rows, cols = linear_sum_assignment(cost)
- for y, x in zip(rows, cols):
- tag = tags[jid, y]
- if y < num_valid and x < num_clusters and \
- l2_dist[y, x] < self.tag_thresh:
- key = candidates[x] # merge to cluster
- else:
- key = tag[0] # initialize new cluster
- cluster[key]['tags'].append(tag)
- cluster[key]['scores'][jid] = heats[jid, y]
- cluster[key]['coords'][jid] = coords[jid, y]
- # shape is [k, J, 2] and [k, J]
- pose_tags = np.array([cluster[k]['tags'] for k in cluster])
- pose_coords = np.array([cluster[k]['coords'] for k in cluster])
- pose_scores = np.array([cluster[k]['scores'] for k in cluster])
- valid = pose_scores > 0
- pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
- if valid.sum() == 0:
- return pose_kpts, pose_kpts
- # refine coords
- valid_coords = pose_coords[valid].astype(np.int32)
- y = valid_coords[..., 0].flatten()
- x = valid_coords[..., 1].flatten()
- _, j = np.nonzero(valid)
- offsets = self.lerp(j, y, x, heatmap)
- pose_coords[valid, 0] += offsets[0]
- pose_coords[valid, 1] += offsets[1]
- # mean score before salvage
- mean_score = pose_scores.mean(axis=1)
- pose_kpts[valid, 2] = pose_scores[valid]
- # salvage missing joints
- if True:
- for pid, coords in enumerate(pose_coords):
- tag_mean = np.array(pose_tags[pid]).mean(axis=0)
- norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
- score = heatmap - np.round(norm) # (J, H, W)
- flat_score = score.reshape(J, -1)
- max_inds = np.argmax(flat_score, axis=1)
- max_scores = np.max(flat_score, axis=1)
- salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
- if salvage_joints.sum() == 0:
- continue
- y = max_inds[salvage_joints] // W
- x = max_inds[salvage_joints] % W
- offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
- y = y.astype(np.float32) + offsets[0]
- x = x.astype(np.float32) + offsets[1]
- pose_coords[pid][salvage_joints, 0] = y
- pose_coords[pid][salvage_joints, 1] = x
- pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
- pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
- original_height, original_width,
- min(H, W))
- return pose_kpts, mean_score
- def transpred(kpts, h, w, s):
- trans, _ = get_affine_mat_kernel(h, w, s, inv=True)
- return warp_affine_joints(kpts[..., :2].copy(), trans)
- def warp_affine_joints(joints, mat):
- """Apply affine transformation defined by the transform matrix on the
- joints.
- Args:
- joints (np.ndarray[..., 2]): Origin coordinate of joints.
- mat (np.ndarray[3, 2]): The affine matrix.
- Returns:
- matrix (np.ndarray[..., 2]): Result coordinate of joints.
- """
- joints = np.array(joints)
- shape = joints.shape
- joints = joints.reshape(-1, 2)
- return np.dot(np.concatenate(
- (joints, joints[:, 0:1] * 0 + 1), axis=1),
- mat.T).reshape(shape)
- class HRNetPostProcess(object):
- def __init__(self, use_dark=True):
- self.use_dark = use_dark
- def flip_back(self, output_flipped, matched_parts):
- assert output_flipped.ndim == 4,\
- 'output_flipped should be [batch_size, num_joints, height, width]'
- output_flipped = output_flipped[:, :, :, ::-1]
- for pair in matched_parts:
- tmp = output_flipped[:, pair[0], :, :].copy()
- output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
- output_flipped[:, pair[1], :, :] = tmp
- return output_flipped
- def get_max_preds(self, heatmaps):
- """get predictions from score maps
- Args:
- heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
- Returns:
- preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
- maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
- """
- assert isinstance(heatmaps,
- np.ndarray), 'heatmaps should be numpy.ndarray'
- assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
- batch_size = heatmaps.shape[0]
- num_joints = heatmaps.shape[1]
- width = heatmaps.shape[3]
- heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
- idx = np.argmax(heatmaps_reshaped, 2)
- maxvals = np.amax(heatmaps_reshaped, 2)
- maxvals = maxvals.reshape((batch_size, num_joints, 1))
- idx = idx.reshape((batch_size, num_joints, 1))
- preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
- preds[:, :, 0] = (preds[:, :, 0]) % width
- preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
- pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
- pred_mask = pred_mask.astype(np.float32)
- preds *= pred_mask
- return preds, maxvals
- def gaussian_blur(self, heatmap, kernel):
- border = (kernel - 1) // 2
- batch_size = heatmap.shape[0]
- num_joints = heatmap.shape[1]
- height = heatmap.shape[2]
- width = heatmap.shape[3]
- for i in range(batch_size):
- for j in range(num_joints):
- origin_max = np.max(heatmap[i, j])
- dr = np.zeros((height + 2 * border, width + 2 * border))
- dr[border:-border, border:-border] = heatmap[i, j].copy()
- dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
- heatmap[i, j] = dr[border:-border, border:-border].copy()
- heatmap[i, j] *= origin_max / np.max(heatmap[i, j])
- return heatmap
- def dark_parse(self, hm, coord):
- heatmap_height = hm.shape[0]
- heatmap_width = hm.shape[1]
- px = int(coord[0])
- py = int(coord[1])
- if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2:
- dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1])
- dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px])
- dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2])
- dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \
- + hm[py-1][px-1])
- dyy = 0.25 * (
- hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px])
- derivative = np.matrix([[dx], [dy]])
- hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
- if dxx * dyy - dxy**2 != 0:
- hessianinv = hessian.I
- offset = -hessianinv * derivative
- offset = np.squeeze(np.array(offset.T), axis=0)
- coord += offset
- return coord
- def dark_postprocess(self, hm, coords, kernelsize):
- """
- refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
- """
- hm = self.gaussian_blur(hm, kernelsize)
- hm = np.maximum(hm, 1e-10)
- hm = np.log(hm)
- for n in range(coords.shape[0]):
- for p in range(coords.shape[1]):
- coords[n, p] = self.dark_parse(hm[n][p], coords[n][p])
- return coords
- def get_final_preds(self, heatmaps, center, scale, kernelsize=3):
- """the highest heatvalue location with a quarter offset in the
- direction from the highest response to the second highest response.
- Args:
- heatmaps (numpy.ndarray): The predicted heatmaps
- center (numpy.ndarray): The boxes center
- scale (numpy.ndarray): The scale factor
- Returns:
- preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
- maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
- """
- coords, maxvals = self.get_max_preds(heatmaps)
- heatmap_height = heatmaps.shape[2]
- heatmap_width = heatmaps.shape[3]
- if self.use_dark:
- coords = self.dark_postprocess(heatmaps, coords, kernelsize)
- else:
- for n in range(coords.shape[0]):
- for p in range(coords.shape[1]):
- hm = heatmaps[n][p]
- px = int(math.floor(coords[n][p][0] + 0.5))
- py = int(math.floor(coords[n][p][1] + 0.5))
- if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
- diff = np.array([
- hm[py][px + 1] - hm[py][px - 1],
- hm[py + 1][px] - hm[py - 1][px]
- ])
- coords[n][p] += np.sign(diff) * .25
- preds = coords.copy()
- # Transform back
- for i in range(coords.shape[0]):
- preds[i] = transform_preds(coords[i], center[i], scale[i],
- [heatmap_width, heatmap_height])
- return preds, maxvals
- def __call__(self, output, center, scale):
- preds, maxvals = self.get_final_preds(output, center, scale)
- return np.concatenate(
- (preds, maxvals), axis=-1), np.mean(
- maxvals, axis=1)
- def transform_preds(coords, center, scale, output_size):
- target_coords = np.zeros(coords.shape)
- trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
- for p in range(coords.shape[0]):
- target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
- return target_coords
- def affine_transform(pt, t):
- new_pt = np.array([pt[0], pt[1], 1.]).T
- new_pt = np.dot(t, new_pt)
- return new_pt[:2]
- def translate_to_ori_images(keypoint_result, batch_records):
- kpts = keypoint_result['keypoint']
- scores = keypoint_result['score']
- kpts[..., 0] += batch_records[:, 0:1]
- kpts[..., 1] += batch_records[:, 1:2]
- return kpts, scores
|