English | 简体中文
我们提供了针对不同场景的基于PaddlePaddle的检测模型,用户可以下载模型进行使用。
任务 | 算法 | 精度(Box AP) | 下载 | 配置文件 |
---|---|---|---|---|
车辆检测 | YOLOv3 | 54.5 | 下载链接 | 配置文件 |
车辆检测的主要应用之一是交通监控。在这样的监控场景中,待检测的车辆多为道路红绿灯柱上的摄像头拍摄所得。
Backbone为Dacknet53的YOLOv3。
PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件yolov3_darknet53_270e_coco.yml,与之相比,在进行车辆检测的模型训练时,我们对以下参数进行了修改:
模型在我们内部数据上的精度指标为:
IOU=.50:.05:.95时的AP为 0.545。
IOU=.5时的AP为 0.764。
用户可以使用我们训练好的模型进行车辆检测:
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/vehicle/vehicle_yolov3_darknet.yml \
-o weights=https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams \
--infer_dir configs/vehicle/demo \
--draw_threshold 0.2 \
--output_dir configs/vehicle/demo/output
预测结果示例: