123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import cv2
- import numpy as np
- from collections import OrderedDict
- import paddle
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- __all__ = ['face_eval_run', 'lmk2out']
- def face_eval_run(model,
- image_dir,
- gt_file,
- pred_dir='output/pred',
- eval_mode='widerface',
- multi_scale=False):
- # load ground truth files
- with open(gt_file, 'r') as f:
- gt_lines = f.readlines()
- imid2path = []
- pos_gt = 0
- while pos_gt < len(gt_lines):
- name_gt = gt_lines[pos_gt].strip('\n\t').split()[0]
- imid2path.append(name_gt)
- pos_gt += 1
- n_gt = int(gt_lines[pos_gt].strip('\n\t').split()[0])
- pos_gt += 1 + n_gt
- logger.info('The ground truth file load {} images'.format(len(imid2path)))
- dets_dist = OrderedDict()
- for iter_id, im_path in enumerate(imid2path):
- image_path = os.path.join(image_dir, im_path)
- if eval_mode == 'fddb':
- image_path += '.jpg'
- assert os.path.exists(image_path)
- image = cv2.imread(image_path)
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- if multi_scale:
- shrink, max_shrink = get_shrink(image.shape[0], image.shape[1])
- det0 = detect_face(model, image, shrink)
- det1 = flip_test(model, image, shrink)
- [det2, det3] = multi_scale_test(model, image, max_shrink)
- det4 = multi_scale_test_pyramid(model, image, max_shrink)
- det = np.row_stack((det0, det1, det2, det3, det4))
- dets = bbox_vote(det)
- else:
- dets = detect_face(model, image, 1)
- if eval_mode == 'widerface':
- save_widerface_bboxes(image_path, dets, pred_dir)
- else:
- dets_dist[im_path] = dets
- if iter_id % 100 == 0:
- logger.info('Test iter {}'.format(iter_id))
- if eval_mode == 'fddb':
- save_fddb_bboxes(dets_dist, pred_dir)
- logger.info("Finish evaluation.")
- def detect_face(model, image, shrink):
- image_shape = [image.shape[0], image.shape[1]]
- if shrink != 1:
- h, w = int(image_shape[0] * shrink), int(image_shape[1] * shrink)
- image = cv2.resize(image, (w, h))
- image_shape = [h, w]
- img = face_img_process(image)
- image_shape = np.asarray([image_shape])
- scale_factor = np.asarray([[shrink, shrink]])
- data = {
- "image": paddle.to_tensor(
- img, dtype='float32'),
- "im_shape": paddle.to_tensor(
- image_shape, dtype='float32'),
- "scale_factor": paddle.to_tensor(
- scale_factor, dtype='float32')
- }
- model.eval()
- detection = model(data)
- detection = detection['bbox'].numpy()
- # layout: xmin, ymin, xmax. ymax, score
- if np.prod(detection.shape) == 1:
- logger.info("No face detected")
- return np.array([[0, 0, 0, 0, 0]])
- det_conf = detection[:, 1]
- det_xmin = detection[:, 2]
- det_ymin = detection[:, 3]
- det_xmax = detection[:, 4]
- det_ymax = detection[:, 5]
- det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
- return det
- def flip_test(model, image, shrink):
- img = cv2.flip(image, 1)
- det_f = detect_face(model, img, shrink)
- det_t = np.zeros(det_f.shape)
- img_width = image.shape[1]
- det_t[:, 0] = img_width - det_f[:, 2]
- det_t[:, 1] = det_f[:, 1]
- det_t[:, 2] = img_width - det_f[:, 0]
- det_t[:, 3] = det_f[:, 3]
- det_t[:, 4] = det_f[:, 4]
- return det_t
- def multi_scale_test(model, image, max_shrink):
- # Shrink detecting is only used to detect big faces
- st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
- det_s = detect_face(model, image, st)
- index = np.where(
- np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
- > 30)[0]
- det_s = det_s[index, :]
- # Enlarge one times
- bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
- det_b = detect_face(model, image, bt)
- # Enlarge small image x times for small faces
- if max_shrink > 2:
- bt *= 2
- while bt < max_shrink:
- det_b = np.row_stack((det_b, detect_face(model, image, bt)))
- bt *= 2
- det_b = np.row_stack((det_b, detect_face(model, image, max_shrink)))
- # Enlarged images are only used to detect small faces.
- if bt > 1:
- index = np.where(
- np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
- det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
- det_b = det_b[index, :]
- # Shrinked images are only used to detect big faces.
- else:
- index = np.where(
- np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
- det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
- det_b = det_b[index, :]
- return det_s, det_b
- def multi_scale_test_pyramid(model, image, max_shrink):
- # Use image pyramids to detect faces
- det_b = detect_face(model, image, 0.25)
- index = np.where(
- np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
- > 30)[0]
- det_b = det_b[index, :]
- st = [0.75, 1.25, 1.5, 1.75]
- for i in range(len(st)):
- if st[i] <= max_shrink:
- det_temp = detect_face(model, image, st[i])
- # Enlarged images are only used to detect small faces.
- if st[i] > 1:
- index = np.where(
- np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
- det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
- det_temp = det_temp[index, :]
- # Shrinked images are only used to detect big faces.
- else:
- index = np.where(
- np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
- det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
- det_temp = det_temp[index, :]
- det_b = np.row_stack((det_b, det_temp))
- return det_b
- def to_chw(image):
- """
- Transpose image from HWC to CHW.
- Args:
- image (np.array): an image with HWC layout.
- """
- # HWC to CHW
- if len(image.shape) == 3:
- image = np.swapaxes(image, 1, 2)
- image = np.swapaxes(image, 1, 0)
- return image
- def face_img_process(image,
- mean=[104., 117., 123.],
- std=[127.502231, 127.502231, 127.502231]):
- img = np.array(image)
- img = to_chw(img)
- img = img.astype('float32')
- img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
- img /= np.array(std)[:, np.newaxis, np.newaxis].astype('float32')
- img = [img]
- img = np.array(img)
- return img
- def get_shrink(height, width):
- """
- Args:
- height (int): image height.
- width (int): image width.
- """
- # avoid out of memory
- max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
- max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5
- def get_round(x, loc):
- str_x = str(x)
- if '.' in str_x:
- str_before, str_after = str_x.split('.')
- len_after = len(str_after)
- if len_after >= 3:
- str_final = str_before + '.' + str_after[0:loc]
- return float(str_final)
- else:
- return x
- max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
- if max_shrink >= 1.5 and max_shrink < 2:
- max_shrink = max_shrink - 0.1
- elif max_shrink >= 2 and max_shrink < 3:
- max_shrink = max_shrink - 0.2
- elif max_shrink >= 3 and max_shrink < 4:
- max_shrink = max_shrink - 0.3
- elif max_shrink >= 4 and max_shrink < 5:
- max_shrink = max_shrink - 0.4
- elif max_shrink >= 5:
- max_shrink = max_shrink - 0.5
- elif max_shrink <= 0.1:
- max_shrink = 0.1
- shrink = max_shrink if max_shrink < 1 else 1
- return shrink, max_shrink
- def bbox_vote(det):
- order = det[:, 4].ravel().argsort()[::-1]
- det = det[order, :]
- if det.shape[0] == 0:
- dets = np.array([[10, 10, 20, 20, 0.002]])
- det = np.empty(shape=[0, 5])
- while det.shape[0] > 0:
- # IOU
- area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
- xx1 = np.maximum(det[0, 0], det[:, 0])
- yy1 = np.maximum(det[0, 1], det[:, 1])
- xx2 = np.minimum(det[0, 2], det[:, 2])
- yy2 = np.minimum(det[0, 3], det[:, 3])
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- o = inter / (area[0] + area[:] - inter)
- # nms
- merge_index = np.where(o >= 0.3)[0]
- det_accu = det[merge_index, :]
- det = np.delete(det, merge_index, 0)
- if merge_index.shape[0] <= 1:
- if det.shape[0] == 0:
- try:
- dets = np.row_stack((dets, det_accu))
- except:
- dets = det_accu
- continue
- det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
- max_score = np.max(det_accu[:, 4])
- det_accu_sum = np.zeros((1, 5))
- det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
- axis=0) / np.sum(det_accu[:, -1:])
- det_accu_sum[:, 4] = max_score
- try:
- dets = np.row_stack((dets, det_accu_sum))
- except:
- dets = det_accu_sum
- dets = dets[0:750, :]
- keep_index = np.where(dets[:, 4] >= 0.01)[0]
- dets = dets[keep_index, :]
- return dets
- def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
- image_name = image_path.split('/')[-1]
- image_class = image_path.split('/')[-2]
- odir = os.path.join(output_dir, image_class)
- if not os.path.exists(odir):
- os.makedirs(odir)
- ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
- f = open(ofname, 'w')
- f.write('{:s}\n'.format(image_class + '/' + image_name))
- f.write('{:d}\n'.format(bboxes_scores.shape[0]))
- for box_score in bboxes_scores:
- xmin, ymin, xmax, ymax, score = box_score
- f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
- xmax - xmin + 1), (ymax - ymin + 1), score))
- f.close()
- logger.info("The predicted result is saved as {}".format(ofname))
- def save_fddb_bboxes(bboxes_scores,
- output_dir,
- output_fname='pred_fddb_res.txt'):
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- predict_file = os.path.join(output_dir, output_fname)
- f = open(predict_file, 'w')
- for image_path, dets in bboxes_scores.iteritems():
- f.write('{:s}\n'.format(image_path))
- f.write('{:d}\n'.format(dets.shape[0]))
- for box_score in dets:
- xmin, ymin, xmax, ymax, score = box_score
- width, height = xmax - xmin, ymax - ymin
- f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'
- .format(xmin, ymin, width, height, score))
- logger.info("The predicted result is saved as {}".format(predict_file))
- return predict_file
- def lmk2out(results, is_bbox_normalized=False):
- """
- Args:
- results: request a dict, should include: `landmark`, `im_id`,
- if is_bbox_normalized=True, also need `im_shape`.
- is_bbox_normalized: whether or not landmark is normalized.
- """
- xywh_res = []
- for t in results:
- bboxes = t['bbox'][0]
- lengths = t['bbox'][1][0]
- im_ids = np.array(t['im_id'][0]).flatten()
- if bboxes.shape == (1, 1) or bboxes is None:
- continue
- face_index = t['face_index'][0]
- prior_box = t['prior_boxes'][0]
- predict_lmk = t['landmark'][0]
- prior = np.reshape(prior_box, (-1, 4))
- predictlmk = np.reshape(predict_lmk, (-1, 10))
- k = 0
- for a in range(len(lengths)):
- num = lengths[a]
- im_id = int(im_ids[a])
- for i in range(num):
- score = bboxes[k][1]
- theindex = face_index[i][0]
- me_prior = prior[theindex, :]
- lmk_pred = predictlmk[theindex, :]
- prior_w = me_prior[2] - me_prior[0]
- prior_h = me_prior[3] - me_prior[1]
- prior_w_center = (me_prior[2] + me_prior[0]) / 2
- prior_h_center = (me_prior[3] + me_prior[1]) / 2
- lmk_decode = np.zeros((10))
- for j in [0, 2, 4, 6, 8]:
- lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center
- for j in [1, 3, 5, 7, 9]:
- lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center
- im_shape = t['im_shape'][0][a].tolist()
- image_h, image_w = int(im_shape[0]), int(im_shape[1])
- if is_bbox_normalized:
- lmk_decode = lmk_decode * np.array([
- image_w, image_h, image_w, image_h, image_w, image_h,
- image_w, image_h, image_w, image_h
- ])
- lmk_res = {
- 'image_id': im_id,
- 'landmark': lmk_decode,
- 'score': score,
- }
- xywh_res.append(lmk_res)
- k += 1
- return xywh_res
|