123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import os
- import sys
- import numpy as np
- import itertools
- import paddle
- from ppdet.modeling.bbox_utils import poly2rbox, rbox2poly_np
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- __all__ = [
- 'draw_pr_curve',
- 'bbox_area',
- 'jaccard_overlap',
- 'prune_zero_padding',
- 'DetectionMAP',
- 'ap_per_class',
- 'compute_ap',
- ]
- def draw_pr_curve(precision,
- recall,
- iou=0.5,
- out_dir='pr_curve',
- file_name='precision_recall_curve.jpg'):
- if not os.path.exists(out_dir):
- os.makedirs(out_dir)
- output_path = os.path.join(out_dir, file_name)
- try:
- import matplotlib.pyplot as plt
- except Exception as e:
- logger.error('Matplotlib not found, plaese install matplotlib.'
- 'for example: `pip install matplotlib`.')
- raise e
- plt.cla()
- plt.figure('P-R Curve')
- plt.title('Precision/Recall Curve(IoU={})'.format(iou))
- plt.xlabel('Recall')
- plt.ylabel('Precision')
- plt.grid(True)
- plt.plot(recall, precision)
- plt.savefig(output_path)
- def bbox_area(bbox, is_bbox_normalized):
- """
- Calculate area of a bounding box
- """
- norm = 1. - float(is_bbox_normalized)
- width = bbox[2] - bbox[0] + norm
- height = bbox[3] - bbox[1] + norm
- return width * height
- def jaccard_overlap(pred, gt, is_bbox_normalized=False):
- """
- Calculate jaccard overlap ratio between two bounding box
- """
- if pred[0] >= gt[2] or pred[2] <= gt[0] or \
- pred[1] >= gt[3] or pred[3] <= gt[1]:
- return 0.
- inter_xmin = max(pred[0], gt[0])
- inter_ymin = max(pred[1], gt[1])
- inter_xmax = min(pred[2], gt[2])
- inter_ymax = min(pred[3], gt[3])
- inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
- is_bbox_normalized)
- pred_size = bbox_area(pred, is_bbox_normalized)
- gt_size = bbox_area(gt, is_bbox_normalized)
- overlap = float(inter_size) / (pred_size + gt_size - inter_size)
- return overlap
- def calc_rbox_iou(pred, gt_rbox):
- """
- calc iou between rotated bbox
- """
- # calc iou of bounding box for speedup
- pred = np.array(pred, np.float32).reshape(-1, 8)
- pred = pred.reshape(-1, 2)
- gt_poly = rbox2poly_np(np.array(gt_rbox).reshape(-1, 5))[0]
- gt_poly = gt_poly.reshape(-1, 2)
- pred_rect = [
- np.min(pred[:, 0]), np.min(pred[:, 1]), np.max(pred[:, 0]),
- np.max(pred[:, 1])
- ]
- gt_rect = [
- np.min(gt_poly[:, 0]), np.min(gt_poly[:, 1]), np.max(gt_poly[:, 0]),
- np.max(gt_poly[:, 1])
- ]
- iou = jaccard_overlap(pred_rect, gt_rect, False)
- if iou <= 0:
- return iou
- # calc rbox iou
- pred = pred.reshape(-1, 8)
- pred = np.array(pred, np.float32).reshape(-1, 8)
- pred_rbox = poly2rbox(pred)
- pred_rbox = pred_rbox.reshape(-1, 5)
- pred_rbox = pred_rbox.reshape(-1, 5)
- try:
- from rbox_iou_ops import rbox_iou
- except Exception as e:
- print("import custom_ops error, try install rbox_iou_ops " \
- "following ppdet/ext_op/README.md", e)
- sys.stdout.flush()
- sys.exit(-1)
- gt_rbox = np.array(gt_rbox, np.float32).reshape(-1, 5)
- pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32')
- pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32')
- iou = rbox_iou(pd_gt_rbox, pd_pred_rbox)
- iou = iou.numpy()
- return iou[0][0]
- def prune_zero_padding(gt_box, gt_label, difficult=None):
- valid_cnt = 0
- for i in range(len(gt_box)):
- if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \
- gt_box[i, 2] == 0 and gt_box[i, 3] == 0:
- break
- valid_cnt += 1
- return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
- if difficult is not None else None)
- class DetectionMAP(object):
- """
- Calculate detection mean average precision.
- Currently support two types: 11point and integral
- Args:
- class_num (int): The class number.
- overlap_thresh (float): The threshold of overlap
- ratio between prediction bounding box and
- ground truth bounding box for deciding
- true/false positive. Default 0.5.
- map_type (str): Calculation method of mean average
- precision, currently support '11point' and
- 'integral'. Default '11point'.
- is_bbox_normalized (bool): Whether bounding boxes
- is normalized to range[0, 1]. Default False.
- evaluate_difficult (bool): Whether to evaluate
- difficult bounding boxes. Default False.
- catid2name (dict): Mapping between category id and category name.
- classwise (bool): Whether per-category AP and draw
- P-R Curve or not.
- """
- def __init__(self,
- class_num,
- overlap_thresh=0.5,
- map_type='11point',
- is_bbox_normalized=False,
- evaluate_difficult=False,
- catid2name=None,
- classwise=False):
- self.class_num = class_num
- self.overlap_thresh = overlap_thresh
- assert map_type in ['11point', 'integral'], \
- "map_type currently only support '11point' "\
- "and 'integral'"
- self.map_type = map_type
- self.is_bbox_normalized = is_bbox_normalized
- self.evaluate_difficult = evaluate_difficult
- self.classwise = classwise
- self.classes = []
- for cname in catid2name.values():
- self.classes.append(cname)
- self.reset()
- def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
- """
- Update metric statics from given prediction and ground
- truth infomations.
- """
- if difficult is None:
- difficult = np.zeros_like(gt_label)
- # record class gt count
- for gtl, diff in zip(gt_label, difficult):
- if self.evaluate_difficult or int(diff) == 0:
- self.class_gt_counts[int(np.array(gtl))] += 1
- # record class score positive
- visited = [False] * len(gt_label)
- for b, s, l in zip(bbox, score, label):
- pred = b.tolist() if isinstance(b, np.ndarray) else b
- max_idx = -1
- max_overlap = -1.0
- for i, gl in enumerate(gt_label):
- if int(gl) == int(l):
- if len(gt_box[i]) == 5:
- overlap = calc_rbox_iou(pred, gt_box[i])
- else:
- overlap = jaccard_overlap(pred, gt_box[i],
- self.is_bbox_normalized)
- if overlap > max_overlap:
- max_overlap = overlap
- max_idx = i
- if max_overlap > self.overlap_thresh:
- if self.evaluate_difficult or \
- int(np.array(difficult[max_idx])) == 0:
- if not visited[max_idx]:
- self.class_score_poss[int(l)].append([s, 1.0])
- visited[max_idx] = True
- else:
- self.class_score_poss[int(l)].append([s, 0.0])
- else:
- self.class_score_poss[int(l)].append([s, 0.0])
- def reset(self):
- """
- Reset metric statics
- """
- self.class_score_poss = [[] for _ in range(self.class_num)]
- self.class_gt_counts = [0] * self.class_num
- self.mAP = 0.0
- def accumulate(self):
- """
- Accumulate metric results and calculate mAP
- """
- mAP = 0.
- valid_cnt = 0
- eval_results = []
- for score_pos, count in zip(self.class_score_poss,
- self.class_gt_counts):
- if count == 0: continue
- if len(score_pos) == 0:
- valid_cnt += 1
- continue
- accum_tp_list, accum_fp_list = \
- self._get_tp_fp_accum(score_pos)
- precision = []
- recall = []
- for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
- precision.append(float(ac_tp) / (ac_tp + ac_fp))
- recall.append(float(ac_tp) / count)
- one_class_ap = 0.0
- if self.map_type == '11point':
- max_precisions = [0.] * 11
- start_idx = len(precision) - 1
- for j in range(10, -1, -1):
- for i in range(start_idx, -1, -1):
- if recall[i] < float(j) / 10.:
- start_idx = i
- if j > 0:
- max_precisions[j - 1] = max_precisions[j]
- break
- else:
- if max_precisions[j] < precision[i]:
- max_precisions[j] = precision[i]
- one_class_ap = sum(max_precisions) / 11.
- mAP += one_class_ap
- valid_cnt += 1
- elif self.map_type == 'integral':
- import math
- prev_recall = 0.
- for i in range(len(precision)):
- recall_gap = math.fabs(recall[i] - prev_recall)
- if recall_gap > 1e-6:
- one_class_ap += precision[i] * recall_gap
- prev_recall = recall[i]
- mAP += one_class_ap
- valid_cnt += 1
- else:
- logger.error("Unspported mAP type {}".format(self.map_type))
- sys.exit(1)
- eval_results.append({
- 'class': self.classes[valid_cnt - 1],
- 'ap': one_class_ap,
- 'precision': precision,
- 'recall': recall,
- })
- self.eval_results = eval_results
- self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
- def get_map(self):
- """
- Get mAP result
- """
- if self.mAP is None:
- logger.error("mAP is not calculated.")
- if self.classwise:
- # Compute per-category AP and PR curve
- try:
- from terminaltables import AsciiTable
- except Exception as e:
- logger.error(
- 'terminaltables not found, plaese install terminaltables. '
- 'for example: `pip install terminaltables`.')
- raise e
- results_per_category = []
- for eval_result in self.eval_results:
- results_per_category.append(
- (str(eval_result['class']),
- '{:0.3f}'.format(float(eval_result['ap']))))
- draw_pr_curve(
- eval_result['precision'],
- eval_result['recall'],
- out_dir='voc_pr_curve',
- file_name='{}_precision_recall_curve.jpg'.format(
- eval_result['class']))
- num_columns = min(6, len(results_per_category) * 2)
- results_flatten = list(itertools.chain(*results_per_category))
- headers = ['category', 'AP'] * (num_columns // 2)
- results_2d = itertools.zip_longest(
- *[results_flatten[i::num_columns] for i in range(num_columns)])
- table_data = [headers]
- table_data += [result for result in results_2d]
- table = AsciiTable(table_data)
- logger.info('Per-category of VOC AP: \n{}'.format(table.table))
- logger.info(
- "per-category PR curve has output to voc_pr_curve folder.")
- return self.mAP
- def _get_tp_fp_accum(self, score_pos_list):
- """
- Calculate accumulating true/false positive results from
- [score, pos] records
- """
- sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
- accum_tp = 0
- accum_fp = 0
- accum_tp_list = []
- accum_fp_list = []
- for (score, pos) in sorted_list:
- accum_tp += int(pos)
- accum_tp_list.append(accum_tp)
- accum_fp += 1 - int(pos)
- accum_fp_list.append(accum_fp)
- return accum_tp_list, accum_fp_list
- def ap_per_class(tp, conf, pred_cls, target_cls):
- """
- Computes the average precision, given the recall and precision curves.
- Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
-
- Args:
- tp (list): True positives.
- conf (list): Objectness value from 0-1.
- pred_cls (list): Predicted object classes.
- target_cls (list): Target object classes.
- """
- tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(
- pred_cls), np.array(target_cls)
- # Sort by objectness
- i = np.argsort(-conf)
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
- # Find unique classes
- unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
- # Create Precision-Recall curve and compute AP for each class
- ap, p, r = [], [], []
- for c in unique_classes:
- i = pred_cls == c
- n_gt = sum(target_cls == c) # Number of ground truth objects
- n_p = sum(i) # Number of predicted objects
- if (n_p == 0) and (n_gt == 0):
- continue
- elif (n_p == 0) or (n_gt == 0):
- ap.append(0)
- r.append(0)
- p.append(0)
- else:
- # Accumulate FPs and TPs
- fpc = np.cumsum(1 - tp[i])
- tpc = np.cumsum(tp[i])
- # Recall
- recall_curve = tpc / (n_gt + 1e-16)
- r.append(tpc[-1] / (n_gt + 1e-16))
- # Precision
- precision_curve = tpc / (tpc + fpc)
- p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
- # AP from recall-precision curve
- ap.append(compute_ap(recall_curve, precision_curve))
- return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(
- p)
- def compute_ap(recall, precision):
- """
- Computes the average precision, given the recall and precision curves.
- Code originally from https://github.com/rbgirshick/py-faster-rcnn.
-
- Args:
- recall (list): The recall curve.
- precision (list): The precision curve.
- Returns:
- The average precision as computed in py-faster-rcnn.
- """
- # correct AP calculation
- # first append sentinel values at the end
- mrec = np.concatenate(([0.], recall, [1.]))
- mpre = np.concatenate(([0.], precision, [0.]))
- # compute the precision envelope
- for i in range(mpre.size - 1, 0, -1):
- mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
- # to calculate area under PR curve, look for points
- # where X axis (recall) changes value
- i = np.where(mrec[1:] != mrec[:-1])[0]
- # and sum (\Delta recall) * prec
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
- return ap
|