123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- import numpy as np
- import itertools
- from ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res
- from ppdet.metrics.map_utils import draw_pr_curve
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- def get_infer_results(outs, catid, bias=0):
- """
- Get result at the stage of inference.
- The output format is dictionary containing bbox or mask result.
- For example, bbox result is a list and each element contains
- image_id, category_id, bbox and score.
- """
- if outs is None or len(outs) == 0:
- raise ValueError(
- 'The number of valid detection result if zero. Please use reasonable model and check input data.'
- )
- im_id = outs['im_id']
- infer_res = {}
- if 'bbox' in outs:
- if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6:
- infer_res['bbox'] = get_det_poly_res(
- outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
- else:
- infer_res['bbox'] = get_det_res(
- outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
- if 'mask' in outs:
- # mask post process
- infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'],
- outs['bbox_num'], im_id, catid)
- if 'segm' in outs:
- infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)
- if 'keypoint' in outs:
- infer_res['keypoint'] = get_keypoint_res(outs, im_id)
- outs['bbox_num'] = [len(infer_res['keypoint'])]
- return infer_res
- def cocoapi_eval(jsonfile,
- style,
- coco_gt=None,
- anno_file=None,
- max_dets=(100, 300, 1000),
- classwise=False,
- sigmas=None,
- use_area=True):
- """
- Args:
- jsonfile (str): Evaluation json file, eg: bbox.json, mask.json.
- style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`.
- coco_gt (str): Whether to load COCOAPI through anno_file,
- eg: coco_gt = COCO(anno_file)
- anno_file (str): COCO annotations file.
- max_dets (tuple): COCO evaluation maxDets.
- classwise (bool): Whether per-category AP and draw P-R Curve or not.
- sigmas (nparray): keypoint labelling sigmas.
- use_area (bool): If gt annotations (eg. CrowdPose, AIC)
- do not have 'area', please set use_area=False.
- """
- assert coco_gt != None or anno_file != None
- if style == 'keypoints_crowd':
- #please install xtcocotools==1.6
- from xtcocotools.coco import COCO
- from xtcocotools.cocoeval import COCOeval
- else:
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- if coco_gt == None:
- coco_gt = COCO(anno_file)
- logger.info("Start evaluate...")
- coco_dt = coco_gt.loadRes(jsonfile)
- if style == 'proposal':
- coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
- coco_eval.params.useCats = 0
- coco_eval.params.maxDets = list(max_dets)
- elif style == 'keypoints_crowd':
- coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area)
- else:
- coco_eval = COCOeval(coco_gt, coco_dt, style)
- coco_eval.evaluate()
- coco_eval.accumulate()
- coco_eval.summarize()
- if classwise:
- # Compute per-category AP and PR curve
- try:
- from terminaltables import AsciiTable
- except Exception as e:
- logger.error(
- 'terminaltables not found, plaese install terminaltables. '
- 'for example: `pip install terminaltables`.')
- raise e
- precisions = coco_eval.eval['precision']
- cat_ids = coco_gt.getCatIds()
- # precision: (iou, recall, cls, area range, max dets)
- assert len(cat_ids) == precisions.shape[2]
- results_per_category = []
- for idx, catId in enumerate(cat_ids):
- # area range index 0: all area ranges
- # max dets index -1: typically 100 per image
- nm = coco_gt.loadCats(catId)[0]
- precision = precisions[:, :, idx, 0, -1]
- precision = precision[precision > -1]
- if precision.size:
- ap = np.mean(precision)
- else:
- ap = float('nan')
- results_per_category.append(
- (str(nm["name"]), '{:0.3f}'.format(float(ap))))
- pr_array = precisions[0, :, idx, 0, 2]
- recall_array = np.arange(0.0, 1.01, 0.01)
- draw_pr_curve(
- pr_array,
- recall_array,
- out_dir=style + '_pr_curve',
- file_name='{}_precision_recall_curve.jpg'.format(nm["name"]))
- num_columns = min(6, len(results_per_category) * 2)
- results_flatten = list(itertools.chain(*results_per_category))
- headers = ['category', 'AP'] * (num_columns // 2)
- results_2d = itertools.zip_longest(
- *[results_flatten[i::num_columns] for i in range(num_columns)])
- table_data = [headers]
- table_data += [result for result in results_2d]
- table = AsciiTable(table_data)
- logger.info('Per-category of {} AP: \n{}'.format(style, table.table))
- logger.info("per-category PR curve has output to {} folder.".format(
- style + '_pr_curve'))
- # flush coco evaluation result
- sys.stdout.flush()
- return coco_eval.stats
- def json_eval_results(metric, json_directory, dataset):
- """
- cocoapi eval with already exists proposal.json, bbox.json or mask.json
- """
- assert metric == 'COCO'
- anno_file = dataset.get_anno()
- json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
- if json_directory:
- assert os.path.exists(
- json_directory), "The json directory:{} does not exist".format(
- json_directory)
- for k, v in enumerate(json_file_list):
- json_file_list[k] = os.path.join(str(json_directory), v)
- coco_eval_style = ['proposal', 'bbox', 'segm']
- for i, v_json in enumerate(json_file_list):
- if os.path.exists(v_json):
- cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
- else:
- logger.info("{} not exists!".format(v_json))
|