123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
- #include "rbox_iou_op.h"
- #include "paddle/extension.h"
- // 2D block with 32 * 16 = 512 threads per block
- const int BLOCK_DIM_X = 32;
- const int BLOCK_DIM_Y = 16;
- /**
- Computes ceil(a / b)
- */
- static inline int CeilDiv(const int a, const int b) {
- return (a + b - 1) / b;
- }
- template <typename T>
- __global__ void rbox_iou_cuda_kernel(
- const int rbox1_num,
- const int rbox2_num,
- const T* rbox1_data_ptr,
- const T* rbox2_data_ptr,
- T* output_data_ptr) {
- // get row_start and col_start
- const int rbox1_block_idx = blockIdx.x * blockDim.x;
- const int rbox2_block_idx = blockIdx.y * blockDim.y;
- const int rbox1_thread_num = min(rbox1_num - rbox1_block_idx, blockDim.x);
- const int rbox2_thread_num = min(rbox2_num - rbox2_block_idx, blockDim.y);
- __shared__ T block_boxes1[BLOCK_DIM_X * 5];
- __shared__ T block_boxes2[BLOCK_DIM_Y * 5];
- // It's safe to copy using threadIdx.x since BLOCK_DIM_X >= BLOCK_DIM_Y
- if (threadIdx.x < rbox1_thread_num && threadIdx.y == 0) {
- block_boxes1[threadIdx.x * 5 + 0] =
- rbox1_data_ptr[(rbox1_block_idx + threadIdx.x) * 5 + 0];
- block_boxes1[threadIdx.x * 5 + 1] =
- rbox1_data_ptr[(rbox1_block_idx + threadIdx.x) * 5 + 1];
- block_boxes1[threadIdx.x * 5 + 2] =
- rbox1_data_ptr[(rbox1_block_idx + threadIdx.x) * 5 + 2];
- block_boxes1[threadIdx.x * 5 + 3] =
- rbox1_data_ptr[(rbox1_block_idx + threadIdx.x) * 5 + 3];
- block_boxes1[threadIdx.x * 5 + 4] =
- rbox1_data_ptr[(rbox1_block_idx + threadIdx.x) * 5 + 4];
- }
- // threadIdx.x < BLOCK_DIM_Y=rbox2_thread_num, just use same condition as above: threadIdx.y == 0
- if (threadIdx.x < rbox2_thread_num && threadIdx.y == 0) {
- block_boxes2[threadIdx.x * 5 + 0] =
- rbox2_data_ptr[(rbox2_block_idx + threadIdx.x) * 5 + 0];
- block_boxes2[threadIdx.x * 5 + 1] =
- rbox2_data_ptr[(rbox2_block_idx + threadIdx.x) * 5 + 1];
- block_boxes2[threadIdx.x * 5 + 2] =
- rbox2_data_ptr[(rbox2_block_idx + threadIdx.x) * 5 + 2];
- block_boxes2[threadIdx.x * 5 + 3] =
- rbox2_data_ptr[(rbox2_block_idx + threadIdx.x) * 5 + 3];
- block_boxes2[threadIdx.x * 5 + 4] =
- rbox2_data_ptr[(rbox2_block_idx + threadIdx.x) * 5 + 4];
- }
- // sync
- __syncthreads();
- if (threadIdx.x < rbox1_thread_num && threadIdx.y < rbox2_thread_num) {
- int offset = (rbox1_block_idx + threadIdx.x) * rbox2_num + rbox2_block_idx + threadIdx.y;
- output_data_ptr[offset] = rbox_iou_single<T>(block_boxes1 + threadIdx.x * 5, block_boxes2 + threadIdx.y * 5);
- }
- }
- #define CHECK_INPUT_GPU(x) PD_CHECK(x.place() == paddle::PlaceType::kGPU, #x " must be a GPU Tensor.")
- std::vector<paddle::Tensor> RboxIouCUDAForward(const paddle::Tensor& rbox1, const paddle::Tensor& rbox2) {
- CHECK_INPUT_GPU(rbox1);
- CHECK_INPUT_GPU(rbox2);
- auto rbox1_num = rbox1.shape()[0];
- auto rbox2_num = rbox2.shape()[0];
- auto output = paddle::Tensor(paddle::PlaceType::kGPU, {rbox1_num, rbox2_num});
- const int blocks_x = CeilDiv(rbox1_num, BLOCK_DIM_X);
- const int blocks_y = CeilDiv(rbox2_num, BLOCK_DIM_Y);
- dim3 blocks(blocks_x, blocks_y);
- dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y);
- PD_DISPATCH_FLOATING_TYPES(
- rbox1.type(),
- "rbox_iou_cuda_kernel",
- ([&] {
- rbox_iou_cuda_kernel<data_t><<<blocks, threads, 0, rbox1.stream()>>>(
- rbox1_num,
- rbox2_num,
- rbox1.data<data_t>(),
- rbox2.data<data_t>(),
- output.mutable_data<data_t>());
- }));
- return {output};
- }
|