1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is based on:
- # https://github.com/dvlab-research/GridMask/blob/master/detection_grid/maskrcnn_benchmark/data/transforms/grid.py
- from __future__ import absolute_import
- from __future__ import print_function
- from __future__ import division
- import numpy as np
- from PIL import Image
- class Gridmask(object):
- def __init__(self,
- use_h=True,
- use_w=True,
- rotate=1,
- offset=False,
- ratio=0.5,
- mode=1,
- prob=0.7,
- upper_iter=360000):
- super(Gridmask, self).__init__()
- self.use_h = use_h
- self.use_w = use_w
- self.rotate = rotate
- self.offset = offset
- self.ratio = ratio
- self.mode = mode
- self.prob = prob
- self.st_prob = prob
- self.upper_iter = upper_iter
- def __call__(self, x, curr_iter):
- self.prob = self.st_prob * min(1, 1.0 * curr_iter / self.upper_iter)
- if np.random.rand() > self.prob:
- return x
- h, w, _ = x.shape
- hh = int(1.5 * h)
- ww = int(1.5 * w)
- d = np.random.randint(2, h)
- self.l = min(max(int(d * self.ratio + 0.5), 1), d - 1)
- mask = np.ones((hh, ww), np.float32)
- st_h = np.random.randint(d)
- st_w = np.random.randint(d)
- if self.use_h:
- for i in range(hh // d):
- s = d * i + st_h
- t = min(s + self.l, hh)
- mask[s:t, :] *= 0
- if self.use_w:
- for i in range(ww // d):
- s = d * i + st_w
- t = min(s + self.l, ww)
- mask[:, s:t] *= 0
- r = np.random.randint(self.rotate)
- mask = Image.fromarray(np.uint8(mask))
- mask = mask.rotate(r)
- mask = np.asarray(mask)
- mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) // 2
- + w].astype(np.float32)
- if self.mode == 1:
- mask = 1 - mask
- mask = np.expand_dims(mask, axis=-1)
- if self.offset:
- offset = (2 * (np.random.rand(h, w) - 0.5)).astype(np.float32)
- x = (x * mask + offset * (1 - mask)).astype(x.dtype)
- else:
- x = (x * mask).astype(x.dtype)
- return x
|