123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- from loguru import logger
- import torch
- import torch.backends.cudnn as cudnn
- from torch.nn.parallel import DistributedDataParallel as DDP
- from yolox.core import launch
- from yolox.exp import get_exp
- from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger
- from yolox.evaluators import MOTEvaluator
- import argparse
- import os
- import random
- import warnings
- import glob
- import motmetrics as mm
- from collections import OrderedDict
- from pathlib import Path
- def make_parser():
- parser = argparse.ArgumentParser("YOLOX Eval")
- parser.add_argument("-expn", "--experiment-name", type=str, default=None)
- parser.add_argument("-n", "--name", type=str, default=None, help="model name")
- # distributed
- parser.add_argument(
- "--dist-backend", default="nccl", type=str, help="distributed backend"
- )
- parser.add_argument(
- "--dist-url",
- default=None,
- type=str,
- help="url used to set up distributed training",
- )
- parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
- parser.add_argument(
- "-d", "--devices", default=None, type=int, help="device for training"
- )
- parser.add_argument(
- "--local_rank", default=0, type=int, help="local rank for dist training"
- )
- parser.add_argument(
- "--num_machines", default=1, type=int, help="num of node for training"
- )
- parser.add_argument(
- "--machine_rank", default=0, type=int, help="node rank for multi-node training"
- )
- parser.add_argument(
- "-f",
- "--exp_file",
- default=None,
- type=str,
- help="pls input your expriment description file",
- )
- parser.add_argument(
- "--fp16",
- dest="fp16",
- default=False,
- action="store_true",
- help="Adopting mix precision evaluating.",
- )
- parser.add_argument(
- "--fuse",
- dest="fuse",
- default=False,
- action="store_true",
- help="Fuse conv and bn for testing.",
- )
- parser.add_argument(
- "--trt",
- dest="trt",
- default=False,
- action="store_true",
- help="Using TensorRT model for testing.",
- )
- parser.add_argument(
- "--test",
- dest="test",
- default=False,
- action="store_true",
- help="Evaluating on test-dev set.",
- )
- parser.add_argument(
- "--speed",
- dest="speed",
- default=False,
- action="store_true",
- help="speed test only.",
- )
- parser.add_argument(
- "opts",
- help="Modify config_files options using the command-line",
- default=None,
- nargs=argparse.REMAINDER,
- )
- # det args
- parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
- parser.add_argument("--conf", default=0.1, type=float, help="test conf")
- parser.add_argument("--nms", default=0.7, type=float, help="test nms threshold")
- parser.add_argument("--tsize", default=None, type=int, help="test img size")
- parser.add_argument("--seed", default=None, type=int, help="eval seed")
- # tracking args
- parser.add_argument("--track_thresh", type=float, default=0.4, help="tracking confidence threshold")
- parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
- parser.add_argument("--match_thresh", type=float, default=0.9, help="matching threshold for tracking")
- parser.add_argument('--min-box-area', type=float, default=100, help='filter out tiny boxes')
- return parser
- def compare_dataframes(gts, ts):
- accs = []
- names = []
- for k, tsacc in ts.items():
- if k in gts:
- logger.info('Comparing {}...'.format(k))
- accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
- names.append(k)
- else:
- logger.warning('No ground truth for {}, skipping.'.format(k))
- return accs, names
- @logger.catch
- def main(exp, args, num_gpu):
- if args.seed is not None:
- random.seed(args.seed)
- torch.manual_seed(args.seed)
- cudnn.deterministic = True
- warnings.warn(
- "You have chosen to seed testing. This will turn on the CUDNN deterministic setting, "
- )
- is_distributed = num_gpu > 1
- # set environment variables for distributed training
- cudnn.benchmark = True
- rank = args.local_rank
- # rank = get_local_rank()
- file_name = os.path.join(exp.output_dir, args.experiment_name)
- if rank == 0:
- os.makedirs(file_name, exist_ok=True)
- results_folder = os.path.join(file_name, "track_results_sort")
- os.makedirs(results_folder, exist_ok=True)
- setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a")
- logger.info("Args: {}".format(args))
- if args.conf is not None:
- exp.test_conf = args.conf
- if args.nms is not None:
- exp.nmsthre = args.nms
- if args.tsize is not None:
- exp.test_size = (args.tsize, args.tsize)
- model = exp.get_model()
- logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
- #logger.info("Model Structure:\n{}".format(str(model)))
- #evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test)
- val_loader = exp.get_eval_loader(args.batch_size, is_distributed, args.test)
- evaluator = MOTEvaluator(
- args=args,
- dataloader=val_loader,
- img_size=exp.test_size,
- confthre=exp.test_conf,
- nmsthre=exp.nmsthre,
- num_classes=exp.num_classes,
- )
- torch.cuda.set_device(rank)
- model.cuda(rank)
- model.eval()
- if not args.speed and not args.trt:
- if args.ckpt is None:
- ckpt_file = os.path.join(file_name, "best_ckpt.pth.tar")
- else:
- ckpt_file = args.ckpt
- logger.info("loading checkpoint")
- loc = "cuda:{}".format(rank)
- ckpt = torch.load(ckpt_file, map_location=loc)
- # load the model state dict
- model.load_state_dict(ckpt["model"])
- logger.info("loaded checkpoint done.")
- if is_distributed:
- model = DDP(model, device_ids=[rank])
- if args.fuse:
- logger.info("\tFusing model...")
- model = fuse_model(model)
- if args.trt:
- assert (
- not args.fuse and not is_distributed and args.batch_size == 1
- ), "TensorRT model is not support model fusing and distributed inferencing!"
- trt_file = os.path.join(file_name, "model_trt.pth")
- assert os.path.exists(
- trt_file
- ), "TensorRT model is not found!\n Run tools/trt.py first!"
- model.head.decode_in_inference = False
- decoder = model.head.decode_outputs
- else:
- trt_file = None
- decoder = None
- # start evaluate
- *_, summary = evaluator.evaluate_sort(
- model, is_distributed, args.fp16, trt_file, decoder, exp.test_size, results_folder
- )
- logger.info("\n" + summary)
- # evaluate MOTA
- mm.lap.default_solver = 'lap'
- gt_type = '_val_half'
- #gt_type = ''
- print('gt_type', gt_type)
- gtfiles = glob.glob(
- os.path.join('datasets/mot/train', '*/gt/gt{}.txt'.format(gt_type)))
- print('gt_files', gtfiles)
- tsfiles = [f for f in glob.glob(os.path.join(results_folder, '*.txt')) if not os.path.basename(f).startswith('eval')]
- logger.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles)))
- logger.info('Available LAP solvers {}'.format(mm.lap.available_solvers))
- logger.info('Default LAP solver \'{}\''.format(mm.lap.default_solver))
- logger.info('Loading files.')
-
- gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=1)) for f in gtfiles])
- ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=-1)) for f in tsfiles])
-
- mh = mm.metrics.create()
- accs, names = compare_dataframes(gt, ts)
-
- logger.info('Running metrics')
- metrics = ['recall', 'precision', 'num_unique_objects', 'mostly_tracked',
- 'partially_tracked', 'mostly_lost', 'num_false_positives', 'num_misses',
- 'num_switches', 'num_fragmentations', 'mota', 'motp', 'num_objects']
- summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
- # summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
- # print(mm.io.render_summary(
- # summary, formatters=mh.formatters,
- # namemap=mm.io.motchallenge_metric_names))
- div_dict = {
- 'num_objects': ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations'],
- 'num_unique_objects': ['mostly_tracked', 'partially_tracked', 'mostly_lost']}
- for divisor in div_dict:
- for divided in div_dict[divisor]:
- summary[divided] = (summary[divided] / summary[divisor])
- fmt = mh.formatters
- change_fmt_list = ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mostly_tracked',
- 'partially_tracked', 'mostly_lost']
- for k in change_fmt_list:
- fmt[k] = fmt['mota']
- print(mm.io.render_summary(summary, formatters=fmt, namemap=mm.io.motchallenge_metric_names))
- metrics = mm.metrics.motchallenge_metrics + ['num_objects']
- summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
- print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names))
- logger.info('Completed')
- if __name__ == "__main__":
- args = make_parser().parse_args()
- exp = get_exp(args.exp_file, args.name)
- exp.merge(args.opts)
- if not args.experiment_name:
- args.experiment_name = exp.exp_name
- num_gpu = torch.cuda.device_count() if args.devices is None else args.devices
- assert num_gpu <= torch.cuda.device_count()
- launch(
- main,
- num_gpu,
- args.num_machines,
- args.machine_rank,
- backend=args.dist_backend,
- dist_url=args.dist_url,
- args=(exp, args, num_gpu),
- )
|