123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- from paddle import fluid
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.data.reader import create_reader
- from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
- from ppdet.utils.cli import ArgsParser
- from ppdet.utils.check import check_version, check_config, enable_static_mode
- import ppdet.utils.checkpoint as checkpoint
- from paddleslim.prune import sensitivity
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- def main():
- env = os.environ
- print("FLAGS.config: {}".format(FLAGS.config))
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- check_version()
- main_arch = cfg.architecture
- place = fluid.CUDAPlace(0)
- exe = fluid.Executor(place)
- # build program
- startup_prog = fluid.Program()
- eval_prog = fluid.Program()
- with fluid.program_guard(eval_prog, startup_prog):
- with fluid.unique_name.guard():
- model = create(main_arch)
- inputs_def = cfg['EvalReader']['inputs_def']
- feed_vars, eval_loader = model.build_inputs(**inputs_def)
- fetches = model.eval(feed_vars)
- eval_prog = eval_prog.clone(True)
- if FLAGS.print_params:
- print(
- "-------------------------All parameters in current graph----------------------"
- )
- for block in eval_prog.blocks:
- for param in block.all_parameters():
- print("parameter name: {}\tshape: {}".format(param.name,
- param.shape))
- print(
- "------------------------------------------------------------------------------"
- )
- return
- eval_reader = create_reader(cfg.EvalReader)
- # When iterable mode, set set_sample_list_generator(eval_reader, place)
- eval_loader.set_sample_list_generator(eval_reader)
- # parse eval fetches
- extra_keys = []
- if cfg.metric == 'COCO':
- extra_keys = ['im_info', 'im_id', 'im_shape']
- if cfg.metric == 'VOC':
- extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
- if cfg.metric == 'WIDERFACE':
- extra_keys = ['im_id', 'im_shape', 'gt_box']
- eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
- extra_keys)
- exe.run(startup_prog)
- fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
- ignore_params = cfg.finetune_exclude_pretrained_params \
- if 'finetune_exclude_pretrained_params' in cfg else []
- start_iter = 0
- if cfg.weights:
- checkpoint.load_params(exe, eval_prog, cfg.weights)
- else:
- logger.warning("Please set cfg.weights to load trained model.")
- # whether output bbox is normalized in model output layer
- is_bbox_normalized = False
- if hasattr(model, 'is_bbox_normalized') and \
- callable(model.is_bbox_normalized):
- is_bbox_normalized = model.is_bbox_normalized()
- # if map_type not set, use default 11point, only use in VOC eval
- map_type = cfg.map_type if 'map_type' in cfg else '11point'
- def test(program):
- compiled_eval_prog = fluid.CompiledProgram(program)
- results = eval_run(
- exe,
- compiled_eval_prog,
- eval_loader,
- eval_keys,
- eval_values,
- eval_cls,
- cfg=cfg)
- resolution = None
- if 'mask' in results[0]:
- resolution = model.mask_head.resolution
- dataset = cfg['EvalReader']['dataset']
- box_ap_stats = eval_results(
- results,
- cfg.metric,
- cfg.num_classes,
- resolution,
- is_bbox_normalized,
- FLAGS.output_eval,
- map_type,
- dataset=dataset)
- return box_ap_stats[0]
- pruned_params = FLAGS.pruned_params
- assert (
- FLAGS.pruned_params is not None
- ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
- pruned_params = FLAGS.pruned_params.strip().split(",")
- logger.info("pruned params: {}".format(pruned_params))
- pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(" ")]
- logger.info("pruned ratios: {}".format(pruned_ratios))
- sensitivity(
- eval_prog,
- place,
- pruned_params,
- test,
- sensitivities_file=FLAGS.sensitivities_file,
- pruned_ratios=pruned_ratios)
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "--output_eval",
- default=None,
- type=str,
- help="Evaluation directory, default is current directory.")
- parser.add_argument(
- "-d",
- "--dataset_dir",
- default=None,
- type=str,
- help="Dataset path, same as DataFeed.dataset.dataset_dir")
- parser.add_argument(
- "-s",
- "--sensitivities_file",
- default="sensitivities.data",
- type=str,
- help="The file used to save sensitivities.")
- parser.add_argument(
- "-p",
- "--pruned_params",
- default=None,
- type=str,
- help="The parameters to be pruned when calculating sensitivities.")
- parser.add_argument(
- "-r",
- "--pruned_ratios",
- default="0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9",
- type=str,
- help="The ratios pruned iteratively for each parameter when calculating sensitivities."
- )
- parser.add_argument(
- "-P",
- "--print_params",
- default=False,
- action='store_true',
- help="Whether to only print the parameters' names and shapes.")
- FLAGS = parser.parse_args()
- main()
|