123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import numpy as np
- from PIL import Image, ImageDraw
- from scipy import ndimage
- import cv2
- from .colormap import colormap
- __all__ = ['visualize_results']
- def visualize_results(image,
- im_id,
- catid2name,
- threshold=0.5,
- bbox_results=None,
- mask_results=None,
- segm_results=None,
- lmk_results=None):
- """
- Visualize bbox and mask results
- """
- if mask_results:
- image = draw_mask(image, im_id, mask_results, threshold)
- if bbox_results:
- image = draw_bbox(image, im_id, catid2name, bbox_results, threshold)
- if lmk_results:
- image = draw_lmk(image, im_id, lmk_results, threshold)
- if segm_results:
- image = draw_segm(image, im_id, catid2name, segm_results, threshold)
- return image
- def draw_mask(image, im_id, segms, threshold, alpha=0.7):
- """
- Draw mask on image
- """
- mask_color_id = 0
- w_ratio = .4
- color_list = colormap(rgb=True)
- img_array = np.array(image).astype('float32')
- for dt in np.array(segms):
- if im_id != dt['image_id']:
- continue
- segm, score = dt['segmentation'], dt['score']
- if score < threshold:
- continue
- import pycocotools.mask as mask_util
- mask = mask_util.decode(segm) * 255
- color_mask = color_list[mask_color_id % len(color_list), 0:3]
- mask_color_id += 1
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- img_array[idx[0], idx[1], :] *= 1.0 - alpha
- img_array[idx[0], idx[1], :] += alpha * color_mask
- return Image.fromarray(img_array.astype('uint8'))
- def draw_segm(image,
- im_id,
- catid2name,
- segms,
- threshold,
- alpha=0.7,
- draw_box=True):
- """
- Draw segmentation on image
- """
- mask_color_id = 0
- w_ratio = .4
- color_list = colormap(rgb=True)
- img_array = np.array(image).astype('float32')
- for dt in np.array(segms):
- if im_id != dt['image_id']:
- continue
- segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
- if score < threshold:
- continue
- import pycocotools.mask as mask_util
- mask = mask_util.decode(segm) * 255
- color_mask = color_list[mask_color_id % len(color_list), 0:3]
- mask_color_id += 1
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- img_array[idx[0], idx[1], :] *= 1.0 - alpha
- img_array[idx[0], idx[1], :] += alpha * color_mask
- if not draw_box:
- center_y, center_x = ndimage.measurements.center_of_mass(mask)
- label_text = "{}".format(catid2name[catid])
- vis_pos = (max(int(center_x) - 10, 0), int(center_y))
- cv2.putText(img_array, label_text, vis_pos,
- cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
- else:
- mask = mask_util.decode(segm) * 255
- sum_x = np.sum(mask, axis=0)
- x = np.where(sum_x > 0.5)[0]
- sum_y = np.sum(mask, axis=1)
- y = np.where(sum_y > 0.5)[0]
- x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
- cv2.rectangle(img_array, (x0, y0), (x1, y1),
- tuple(color_mask.astype('int32').tolist()), 1)
- bbox_text = '%s %.2f' % (catid2name[catid], score)
- t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
- cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
- y0 - t_size[1] - 3),
- tuple(color_mask.astype('int32').tolist()), -1)
- cv2.putText(
- img_array,
- bbox_text, (x0, y0 - 2),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.3, (0, 0, 0),
- 1,
- lineType=cv2.LINE_AA)
- return Image.fromarray(img_array.astype('uint8'))
- def draw_bbox(image, im_id, catid2name, bboxes, threshold):
- """
- Draw bbox on image
- """
- draw = ImageDraw.Draw(image)
- catid2color = {}
- color_list = colormap(rgb=True)[:40]
- for dt in np.array(bboxes):
- if im_id != dt['image_id']:
- continue
- catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
- if score < threshold:
- continue
- xmin, ymin, w, h = bbox
- xmax = xmin + w
- ymax = ymin + h
- if catid not in catid2color:
- idx = np.random.randint(len(color_list))
- catid2color[catid] = color_list[idx]
- color = tuple(catid2color[catid])
- # draw bbox
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=2,
- fill=color)
- # draw label
- text = "{} {:.2f}".format(catid2name[catid], score)
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
- return image
- def draw_lmk(image, im_id, lmk_results, threshold):
- draw = ImageDraw.Draw(image)
- catid2color = {}
- color_list = colormap(rgb=True)[:40]
- for dt in np.array(lmk_results):
- lmk_decode, score = dt['landmark'], dt['score']
- if im_id != dt['image_id']:
- continue
- if score < threshold:
- continue
- for j in range(5):
- x1 = int(round(lmk_decode[2 * j]))
- y1 = int(round(lmk_decode[2 * j + 1]))
- draw.ellipse(
- (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
- return image
|