123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import os
- import paddle.fluid as fluid
- def nccl2_prepare(trainer_id, startup_prog, main_prog):
- config = fluid.DistributeTranspilerConfig()
- config.mode = "nccl2"
- t = fluid.DistributeTranspiler(config=config)
- t.transpile(
- trainer_id,
- trainers=os.environ.get('PADDLE_TRAINER_ENDPOINTS'),
- current_endpoint=os.environ.get('PADDLE_CURRENT_ENDPOINT'),
- startup_program=startup_prog,
- program=main_prog)
- def collective_prepare(trainer_id, startup_prog, main_prog):
- config = fluid.DistributeTranspilerConfig()
- config.mode = "collective"
- config.collective_mode = "grad_allreduce"
- t = fluid.DistributeTranspiler(config=config)
- t.transpile(
- trainer_id,
- trainers=os.environ.get('PADDLE_TRAINER_ENDPOINTS'),
- current_endpoint=os.environ.get('PADDLE_CURRENT_ENDPOINT'),
- startup_program=startup_prog,
- program=main_prog)
- def prepare_for_multi_process(exe, build_strategy, startup_prog, main_prog):
- trainer_id = int(os.environ.get('PADDLE_TRAINER_ID', 0))
- num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
- if num_trainers < 2:
- return
- build_strategy.num_trainers = num_trainers
- build_strategy.trainer_id = trainer_id
- if fluid.core.is_compiled_with_npu():
- collective_prepare(trainer_id, startup_prog, main_prog)
- else:
- nccl2_prepare(trainer_id, startup_prog, main_prog)
|