123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- from paddle import fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- __all__ = ['YOLOv3', 'YOLOv4']
- @register
- class YOLOv3(object):
- """
- YOLOv3 network, see https://arxiv.org/abs/1804.02767
- Args:
- backbone (object): an backbone instance
- yolo_head (object): an `YOLOv3Head` instance
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'yolo_head']
- __shared__ = ['use_fine_grained_loss']
- def __init__(self,
- backbone,
- yolo_head='YOLOv3Head',
- use_fine_grained_loss=False):
- super(YOLOv3, self).__init__()
- self.backbone = backbone
- self.yolo_head = yolo_head
- self.use_fine_grained_loss = use_fine_grained_loss
- def build(self, feed_vars, mode='train', exclude_nms=False):
- im = feed_vars['image']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- body_feats = self.backbone(im)
- if isinstance(body_feats, OrderedDict):
- body_feat_names = list(body_feats.keys())
- body_feats = [body_feats[name] for name in body_feat_names]
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]
- if mode == 'train':
- gt_bbox = feed_vars['gt_bbox']
- gt_class = feed_vars['gt_class']
- gt_score = feed_vars['gt_score']
- # Get targets for splited yolo loss calculation
- num_output_layer = len(self.yolo_head.anchor_masks)
- targets = []
- for i in range(num_output_layer):
- k = 'target{}'.format(i)
- if k in feed_vars:
- targets.append(feed_vars[k])
- loss = self.yolo_head.get_loss(body_feats, gt_bbox, gt_class,
- gt_score, targets)
- total_loss = fluid.layers.sum(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- else:
- im_size = feed_vars['im_size']
- # exclude_nms only for benchmark, postprocess(NMS) is not needed
- return self.yolo_head.get_prediction(
- body_feats, im_size, exclude_nms=exclude_nms)
- def _inputs_def(self, image_shape, num_max_boxes):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_size': {'shape': [None, 2], 'dtype': 'int32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, num_max_boxes, 4], 'dtype': 'float32', 'lod_level': 0},
- 'gt_class': {'shape': [None, num_max_boxes], 'dtype': 'int32', 'lod_level': 0},
- 'gt_score': {'shape': [None, num_max_boxes], 'dtype': 'float32', 'lod_level': 0},
- 'is_difficult': {'shape': [None, num_max_boxes],'dtype': 'int32', 'lod_level': 0},
- }
- # yapf: enable
- if self.use_fine_grained_loss:
- # yapf: disable
- num_output_layer = len(self.yolo_head.anchor_masks)
- targets_def = {}
- for i in range(num_output_layer):
- targets_def['target{}'.format(i)] = {'shape': [None, 3, None, None, None], 'dtype': 'float32', 'lod_level': 0}
- # yapf: enable
- downsample = 32
- for k, mask in zip(targets_def.keys(), self.yolo_head.anchor_masks):
- targets_def[k]['shape'][1] = len(mask)
- targets_def[k]['shape'][2] = 6 + self.yolo_head.num_classes
- targets_def[k]['shape'][3] = image_shape[
- -2] // downsample if image_shape[-2] else None
- targets_def[k]['shape'][4] = image_shape[
- -1] // downsample if image_shape[-1] else None
- downsample //= 2
- inputs_def.update(targets_def)
- return inputs_def
- def build_inputs(
- self,
- image_shape=[3, None, None],
- fields=['image', 'gt_bbox', 'gt_class', 'gt_score'], # for train
- num_max_boxes=50,
- use_dataloader=True,
- iterable=False):
- inputs_def = self._inputs_def(image_shape, num_max_boxes)
- # if fields has im_size, this is in eval/infer mode, fine grained loss
- # will be disabled for YOLOv3 architecture do not calculate loss in
- # eval/infer mode.
- if 'im_size' not in fields and self.use_fine_grained_loss:
- num_output_layer = len(self.yolo_head.anchor_masks)
- fields.extend(
- ['target{}'.format(i) for i in range(num_output_layer)])
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, mode='train')
- def eval(self, feed_vars):
- return self.build(feed_vars, mode='test')
- def test(self, feed_vars, exclude_nms=False):
- return self.build(feed_vars, mode='test', exclude_nms=exclude_nms)
- @register
- class YOLOv4(YOLOv3):
- """
- YOLOv4 network, see https://arxiv.org/abs/2004.10934
- Args:
- backbone (object): an backbone instance
- yolo_head (object): an `YOLOv4Head` instance
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'yolo_head']
- __shared__ = ['use_fine_grained_loss']
- def __init__(self,
- backbone,
- yolo_head='YOLOv4Head',
- use_fine_grained_loss=False):
- super(YOLOv4, self).__init__(
- backbone=backbone,
- yolo_head=yolo_head,
- use_fine_grained_loss=use_fine_grained_loss)
|