123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- from paddle import fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- from ppdet.utils.check import check_version
- __all__ = ['SOLOv2']
- @register
- class SOLOv2(object):
- """
- SOLOv2 network, see https://arxiv.org/abs/2003.10152
- Args:
- backbone (object): an backbone instance
- fpn (object): feature pyramid network instance
- bbox_head (object): an `SOLOv2Head` instance
- mask_head (object): an `SOLOv2MaskHead` instance
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'fpn', 'bbox_head', 'mask_head']
- def __init__(self,
- backbone,
- fpn=None,
- bbox_head='SOLOv2Head',
- mask_head='SOLOv2MaskHead'):
- super(SOLOv2, self).__init__()
- check_version('2.0.0-rc0')
- self.backbone = backbone
- self.fpn = fpn
- self.bbox_head = bbox_head
- self.mask_head = mask_head
- def build(self, feed_vars, mode='train'):
- im = feed_vars['image']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- body_feats = self.backbone(im)
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- if isinstance(body_feats, OrderedDict):
- body_feat_names = list(body_feats.keys())
- body_feats = [body_feats[name] for name in body_feat_names]
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]
- mask_feat_pred = self.mask_head.get_output(body_feats)
- if mode == 'train':
- ins_labels = []
- cate_labels = []
- grid_orders = []
- fg_num = feed_vars['fg_num']
- for i in range(self.num_level):
- ins_label = 'ins_label{}'.format(i)
- if ins_label in feed_vars:
- ins_labels.append(feed_vars[ins_label])
- cate_label = 'cate_label{}'.format(i)
- if cate_label in feed_vars:
- cate_labels.append(feed_vars[cate_label])
- grid_order = 'grid_order{}'.format(i)
- if grid_order in feed_vars:
- grid_orders.append(feed_vars[grid_order])
- cate_preds, kernel_preds = self.bbox_head.get_outputs(body_feats)
- losses = self.bbox_head.get_loss(cate_preds, kernel_preds,
- mask_feat_pred, ins_labels,
- cate_labels, grid_orders, fg_num)
- total_loss = fluid.layers.sum(list(losses.values()))
- losses.update({'loss': total_loss})
- return losses
- else:
- im_info = feed_vars['im_info']
- outs = self.bbox_head.get_outputs(body_feats, is_eval=True)
- seg_inputs = outs + (mask_feat_pred, im_info)
- return self.bbox_head.get_prediction(*seg_inputs)
- def _inputs_def(self, image_shape, fields):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_info': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- }
- if 'gt_segm' in fields:
- for i in range(self.num_level):
- targets_def = {
- 'ins_label%d' % i: {'shape': [None, None, None], 'dtype': 'int32', 'lod_level': 1},
- 'cate_label%d' % i: {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
- 'grid_order%d' % i: {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
- }
- inputs_def.update(targets_def)
- targets_def = {
- 'fg_num': {'shape': [None], 'dtype': 'int32', 'lod_level': 0},
- }
- # yapf: enable
- inputs_def.update(targets_def)
- return inputs_def
- def build_inputs(
- self,
- image_shape=[3, None, None],
- fields=['image', 'im_id', 'gt_segm'], # for train
- num_level=5,
- use_dataloader=True,
- iterable=False):
- self.num_level = num_level
- inputs_def = self._inputs_def(image_shape, fields)
- if 'gt_segm' in fields:
- fields.remove('gt_segm')
- fields.extend(['fg_num'])
- for i in range(num_level):
- fields.extend([
- 'ins_label%d' % i, 'cate_label%d' % i, 'grid_order%d' % i
- ])
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, mode='train')
- def eval(self, feed_vars):
- return self.build(feed_vars, mode='test')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, mode='test')
|