123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import paddle.fluid as fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- __all__ = ['FCOS']
- @register
- class FCOS(object):
- """
- FCOS architecture, see https://arxiv.org/abs/1904.01355
- Args:
- backbone (object): backbone instance
- fpn (object): feature pyramid network instance
- fcos_head (object): `FCOSHead` instance
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'fpn', 'fcos_head']
- def __init__(self, backbone, fpn, fcos_head):
- super(FCOS, self).__init__()
- self.backbone = backbone
- self.fpn = fpn
- self.fcos_head = fcos_head
- def build(self, feed_vars, mode='train'):
- im = feed_vars['image']
- im_info = feed_vars['im_info']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- # backbone
- body_feats = self.backbone(im)
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
- for k, v in body_feats.items())
- # FPN
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- # fcosnet head
- if mode == 'train':
- tag_labels = []
- tag_bboxes = []
- tag_centerness = []
- for i in range(len(self.fcos_head.fpn_stride)):
- # reg_target, labels, scores, centerness
- k_lbl = 'labels{}'.format(i)
- if k_lbl in feed_vars:
- tag_labels.append(feed_vars[k_lbl])
- k_box = 'reg_target{}'.format(i)
- if k_box in feed_vars:
- tag_bboxes.append(feed_vars[k_box])
- k_ctn = 'centerness{}'.format(i)
- if k_ctn in feed_vars:
- tag_centerness.append(feed_vars[k_ctn])
- # tag_labels, tag_bboxes, tag_centerness
- loss = self.fcos_head.get_loss(body_feats, tag_labels, tag_bboxes,
- tag_centerness)
- total_loss = fluid.layers.sum(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- else:
- pred = self.fcos_head.get_prediction(body_feats, im_info)
- return pred
- def _inputs_def(self, image_shape, fields):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_info': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
- 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'gt_score': {'shape': [None, 1], 'dtype': 'float32', 'lod_level': 1},
- 'is_crowd': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1}
- }
- # yapf: disable
- if 'fcos_target' in fields:
- targets_def = {
- 'labels0': {'shape': [None, None, None, 1], 'dtype': 'int32', 'lod_level': 0},
- 'reg_target0': {'shape': [None, None, None, 4], 'dtype': 'float32', 'lod_level': 0},
- 'centerness0': {'shape': [None, None, None, 1], 'dtype': 'float32', 'lod_level': 0},
- 'labels1': {'shape': [None, None, None, 1], 'dtype': 'int32', 'lod_level': 0},
- 'reg_target1': {'shape': [None, None, None, 4], 'dtype': 'float32', 'lod_level': 0},
- 'centerness1': {'shape': [None, None, None, 1], 'dtype': 'float32', 'lod_level': 0},
- 'labels2': {'shape': [None, None, None, 1], 'dtype': 'int32', 'lod_level': 0},
- 'reg_target2': {'shape': [None, None, None, 4], 'dtype': 'float32', 'lod_level': 0},
- 'centerness2': {'shape': [None, None, None, 1], 'dtype': 'float32', 'lod_level': 0},
- 'labels3': {'shape': [None, None, None, 1], 'dtype': 'int32', 'lod_level': 0},
- 'reg_target3': {'shape': [None, None, None, 4], 'dtype': 'float32', 'lod_level': 0},
- 'centerness3': {'shape': [None, None, None, 1], 'dtype': 'float32', 'lod_level': 0},
- 'labels4': {'shape': [None, None, None, 1], 'dtype': 'int32', 'lod_level': 0},
- 'reg_target4': {'shape': [None, None, None, 4], 'dtype': 'float32', 'lod_level': 0},
- 'centerness4': {'shape': [None, None, None, 1], 'dtype': 'float32', 'lod_level': 0},
- }
- # yapf: enable
- # downsample = 128
- for k, stride in enumerate(self.fcos_head.fpn_stride):
- k_lbl = 'labels{}'.format(k)
- k_box = 'reg_target{}'.format(k)
- k_ctn = 'centerness{}'.format(k)
- grid_y = image_shape[-2] // stride if image_shape[-2] else None
- grid_x = image_shape[-1] // stride if image_shape[-1] else None
- if grid_x is not None:
- num_pts = grid_x * grid_y
- num_dim2 = 1
- else:
- num_pts = None
- num_dim2 = None
- targets_def[k_lbl]['shape'][1] = num_pts
- targets_def[k_box]['shape'][1] = num_pts
- targets_def[k_ctn]['shape'][1] = num_pts
- targets_def[k_lbl]['shape'][2] = num_dim2
- targets_def[k_box]['shape'][2] = num_dim2
- targets_def[k_ctn]['shape'][2] = num_dim2
- inputs_def.update(targets_def)
- return inputs_def
- def build_inputs(
- self,
- image_shape=[3, None, None],
- fields=['image', 'im_info', 'fcos_target'], # for-train
- use_dataloader=True,
- iterable=False):
- inputs_def = self._inputs_def(image_shape, fields)
- if "fcos_target" in fields:
- for i in range(len(self.fcos_head.fpn_stride)):
- fields.extend(
- ['labels%d' % i, 'reg_target%d' % i, 'centerness%d' % i])
- fields.remove('fcos_target')
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars):
- return self.build(feed_vars, 'test')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
|