123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from collections import OrderedDict
- import paddle.fluid as fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- __all__ = ['EfficientDet']
- @register
- class EfficientDet(object):
- """
- EfficientDet architecture, see https://arxiv.org/abs/1911.09070
- Args:
- backbone (object): backbone instance
- fpn (object): feature pyramid network instance
- retina_head (object): `RetinaHead` instance
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'fpn', 'efficient_head', 'anchor_grid']
- def __init__(self,
- backbone,
- fpn,
- efficient_head,
- anchor_grid,
- box_loss_weight=50.):
- super(EfficientDet, self).__init__()
- self.backbone = backbone
- self.fpn = fpn
- self.efficient_head = efficient_head
- self.anchor_grid = anchor_grid
- self.box_loss_weight = box_loss_weight
- def build(self, feed_vars, mode='train'):
- im = feed_vars['image']
- if mode == 'train':
- gt_labels = feed_vars['gt_label']
- gt_targets = feed_vars['gt_target']
- fg_num = feed_vars['fg_num']
- else:
- im_info = feed_vars['im_info']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- body_feats = self.backbone(im)
- if mixed_precision_enabled:
- body_feats = [fluid.layers.cast(f, 'float32') for f in body_feats]
- body_feats = self.fpn(body_feats)
- # XXX not used for training, but the parameters are needed when
- # exporting inference model
- anchors = self.anchor_grid()
- if mode == 'train':
- loss = self.efficient_head.get_loss(body_feats, gt_labels,
- gt_targets, fg_num)
- loss_cls = loss['loss_cls']
- loss_bbox = loss['loss_bbox']
- total_loss = loss_cls + self.box_loss_weight * loss_bbox
- loss.update({'loss': total_loss})
- return loss
- else:
- pred = self.efficient_head.get_prediction(body_feats, anchors,
- im_info)
- return pred
- def _inputs_def(self, image_shape):
- im_shape = [None] + image_shape
- inputs_def = {
- 'image': {
- 'shape': im_shape,
- 'dtype': 'float32'
- },
- 'im_info': {
- 'shape': [None, 3],
- 'dtype': 'float32'
- },
- 'im_id': {
- 'shape': [None, 1],
- 'dtype': 'int64'
- },
- 'im_shape': {
- 'shape': [None, 3],
- 'dtype': 'float32'
- },
- 'fg_num': {
- 'shape': [None, 1],
- 'dtype': 'int32'
- },
- 'gt_label': {
- 'shape': [None, None, 1],
- 'dtype': 'int32'
- },
- 'gt_target': {
- 'shape': [None, None, 4],
- 'dtype': 'float32'
- },
- }
- return inputs_def
- def build_inputs(self,
- image_shape=[3, None, None],
- fields=[
- 'image', 'im_info', 'im_id', 'fg_num', 'gt_label',
- 'gt_target'
- ],
- use_dataloader=True,
- iterable=False):
- inputs_def = self._inputs_def(image_shape)
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars):
- return self.build(feed_vars, 'test')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
|