yolox_tiny_300e_coco.yml 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. _BASE_: [
  2. '../datasets/coco_detection.yml',
  3. '../runtime.yml',
  4. './_base_/optimizer_300e.yml',
  5. './_base_/yolox_cspdarknet.yml',
  6. './_base_/yolox_reader.yml'
  7. ]
  8. depth_mult: 0.33
  9. width_mult: 0.375
  10. log_iter: 100
  11. snapshot_epoch: 10
  12. weights: output/yolox_tiny_300e_coco/model_final
  13. ### model config:
  14. YOLOX:
  15. backbone: CSPDarkNet
  16. neck: YOLOCSPPAN
  17. head: YOLOXHead
  18. size_stride: 32
  19. size_range: [10, 20] # multi-scale ragne [320*320 ~ 640*640]
  20. ### reader config:
  21. # Note: YOLOX-tiny/nano uses 416*416 for evaluation and inference.
  22. # And multi-scale training setting is in model config, TrainReader's operators use 640*640 as default.
  23. worker_num: 4
  24. TrainReader:
  25. sample_transforms:
  26. - Decode: {}
  27. - Mosaic:
  28. prob: 1.0
  29. input_dim: [640, 640]
  30. degrees: [-10, 10]
  31. scale: [0.5, 1.5] # [0.1, 2.0] in YOLOX-s/m/l/x
  32. shear: [-2, 2]
  33. translate: [-0.1, 0.1]
  34. enable_mixup: False # True in YOLOX-s/m/l/x
  35. - AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30}
  36. - PadResize: {target_size: 640}
  37. - RandomFlip: {}
  38. batch_transforms:
  39. - Permute: {}
  40. batch_size: 8
  41. shuffle: True
  42. drop_last: True
  43. collate_batch: False
  44. mosaic_epoch: 285
  45. EvalReader:
  46. sample_transforms:
  47. - Decode: {}
  48. - Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
  49. - Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
  50. - Permute: {}
  51. batch_size: 8
  52. TestReader:
  53. inputs_def:
  54. image_shape: [3, 416, 416]
  55. sample_transforms:
  56. - Decode: {}
  57. - Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
  58. - Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
  59. - Permute: {}
  60. batch_size: 1