123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- _BASE_: [
- '../datasets/coco_detection.yml',
- '../runtime.yml',
- './_base_/optimizer_300e.yml',
- './_base_/yolox_cspdarknet.yml',
- './_base_/yolox_reader.yml'
- ]
- depth_mult: 0.33
- width_mult: 0.25
- log_iter: 100
- snapshot_epoch: 10
- weights: output/yolox_nano_300e_coco/model_final
- ### model config:
- # Note: YOLOX-nano use depthwise conv in backbone, neck and head.
- YOLOX:
- backbone: CSPDarkNet
- neck: YOLOCSPPAN
- head: YOLOXHead
- size_stride: 32
- size_range: [10, 20] # multi-scale range [320*320 ~ 640*640]
- CSPDarkNet:
- arch: "X"
- return_idx: [2, 3, 4]
- depthwise: True
- YOLOCSPPAN:
- depthwise: True
- YOLOXHead:
- depthwise: True
- ### reader config:
- # Note: YOLOX-tiny/nano uses 416*416 for evaluation and inference.
- # And multi-scale training setting is in model config, TrainReader's operators use 640*640 as default.
- worker_num: 4
- TrainReader:
- sample_transforms:
- - Decode: {}
- - Mosaic:
- prob: 0.5 # 1.0 in YOLOX-tiny/s/m/l/x
- input_dim: [640, 640]
- degrees: [-10, 10]
- scale: [0.5, 1.5] # [0.1, 2.0] in YOLOX-s/m/l/x
- shear: [-2, 2]
- translate: [-0.1, 0.1]
- enable_mixup: False # True in YOLOX-s/m/l/x
- - AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30}
- - PadResize: {target_size: 640}
- - RandomFlip: {}
- batch_transforms:
- - Permute: {}
- batch_size: 8
- shuffle: True
- drop_last: True
- collate_batch: False
- mosaic_epoch: 285
- EvalReader:
- sample_transforms:
- - Decode: {}
- - Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- - Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- - Permute: {}
- batch_size: 8
- TestReader:
- inputs_def:
- image_shape: [3, 416, 416]
- sample_transforms:
- - Decode: {}
- - Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- - Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- - Permute: {}
- batch_size: 1
|