123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502 |
- // Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- #include "cocoeval.h"
- #include <time.h>
- #include <algorithm>
- #include <cstdint>
- #include <numeric>
- using namespace pybind11::literals;
- namespace COCOeval {
- // Sort detections from highest score to lowest, such that
- // detection_instances[detection_sorted_indices[t]] >=
- // detection_instances[detection_sorted_indices[t+1]]. Use stable_sort to match
- // original COCO API
- void SortInstancesByDetectionScore(
- const std::vector<InstanceAnnotation>& detection_instances,
- std::vector<uint64_t>* detection_sorted_indices) {
- detection_sorted_indices->resize(detection_instances.size());
- std::iota(
- detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
- std::stable_sort(
- detection_sorted_indices->begin(),
- detection_sorted_indices->end(),
- [&detection_instances](size_t j1, size_t j2) {
- return detection_instances[j1].score > detection_instances[j2].score;
- });
- }
- // Partition the ground truth objects based on whether or not to ignore them
- // based on area
- void SortInstancesByIgnore(
- const std::array<double, 2>& area_range,
- const std::vector<InstanceAnnotation>& ground_truth_instances,
- std::vector<uint64_t>* ground_truth_sorted_indices,
- std::vector<bool>* ignores) {
- ignores->clear();
- ignores->reserve(ground_truth_instances.size());
- for (auto o : ground_truth_instances) {
- ignores->push_back(
- o.ignore || o.area < area_range[0] || o.area > area_range[1]);
- }
- ground_truth_sorted_indices->resize(ground_truth_instances.size());
- std::iota(
- ground_truth_sorted_indices->begin(),
- ground_truth_sorted_indices->end(),
- 0);
- std::stable_sort(
- ground_truth_sorted_indices->begin(),
- ground_truth_sorted_indices->end(),
- [&ignores](size_t j1, size_t j2) {
- return (int)(*ignores)[j1] < (int)(*ignores)[j2];
- });
- }
- // For each IOU threshold, greedily match each detected instance to a ground
- // truth instance (if possible) and store the results
- void MatchDetectionsToGroundTruth(
- const std::vector<InstanceAnnotation>& detection_instances,
- const std::vector<uint64_t>& detection_sorted_indices,
- const std::vector<InstanceAnnotation>& ground_truth_instances,
- const std::vector<uint64_t>& ground_truth_sorted_indices,
- const std::vector<bool>& ignores,
- const std::vector<std::vector<double>>& ious,
- const std::vector<double>& iou_thresholds,
- const std::array<double, 2>& area_range,
- ImageEvaluation* results) {
- // Initialize memory to store return data matches and ignore
- const int num_iou_thresholds = iou_thresholds.size();
- const int num_ground_truth = ground_truth_sorted_indices.size();
- const int num_detections = detection_sorted_indices.size();
- std::vector<uint64_t> ground_truth_matches(
- num_iou_thresholds * num_ground_truth, 0);
- std::vector<uint64_t>& detection_matches = results->detection_matches;
- std::vector<bool>& detection_ignores = results->detection_ignores;
- std::vector<bool>& ground_truth_ignores = results->ground_truth_ignores;
- detection_matches.resize(num_iou_thresholds * num_detections, 0);
- detection_ignores.resize(num_iou_thresholds * num_detections, false);
- ground_truth_ignores.resize(num_ground_truth);
- for (auto g = 0; g < num_ground_truth; ++g) {
- ground_truth_ignores[g] = ignores[ground_truth_sorted_indices[g]];
- }
- for (auto t = 0; t < num_iou_thresholds; ++t) {
- for (auto d = 0; d < num_detections; ++d) {
- // information about best match so far (match=-1 -> unmatched)
- double best_iou = std::min(iou_thresholds[t], 1 - 1e-10);
- int match = -1;
- for (auto g = 0; g < num_ground_truth; ++g) {
- // if this ground truth instance is already matched and not a
- // crowd, it cannot be matched to another detection
- if (ground_truth_matches[t * num_ground_truth + g] > 0 &&
- !ground_truth_instances[ground_truth_sorted_indices[g]].is_crowd) {
- continue;
- }
- // if detected instance matched to a regular ground truth
- // instance, we can break on the first ground truth instance
- // tagged as ignore (because they are sorted by the ignore tag)
- if (match >= 0 && !ground_truth_ignores[match] &&
- ground_truth_ignores[g]) {
- break;
- }
- // if IOU overlap is the best so far, store the match appropriately
- if (ious[d][ground_truth_sorted_indices[g]] >= best_iou) {
- best_iou = ious[d][ground_truth_sorted_indices[g]];
- match = g;
- }
- }
- // if match was made, store id of match for both detection and
- // ground truth
- if (match >= 0) {
- detection_ignores[t * num_detections + d] = ground_truth_ignores[match];
- detection_matches[t * num_detections + d] =
- ground_truth_instances[ground_truth_sorted_indices[match]].id;
- ground_truth_matches[t * num_ground_truth + match] =
- detection_instances[detection_sorted_indices[d]].id;
- }
- // set unmatched detections outside of area range to ignore
- const InstanceAnnotation& detection =
- detection_instances[detection_sorted_indices[d]];
- detection_ignores[t * num_detections + d] =
- detection_ignores[t * num_detections + d] ||
- (detection_matches[t * num_detections + d] == 0 &&
- (detection.area < area_range[0] || detection.area > area_range[1]));
- }
- }
- // store detection score results
- results->detection_scores.resize(detection_sorted_indices.size());
- for (size_t d = 0; d < detection_sorted_indices.size(); ++d) {
- results->detection_scores[d] =
- detection_instances[detection_sorted_indices[d]].score;
- }
- }
- std::vector<ImageEvaluation> EvaluateImages(
- const std::vector<std::array<double, 2>>& area_ranges,
- int max_detections,
- const std::vector<double>& iou_thresholds,
- const ImageCategoryInstances<std::vector<double>>& image_category_ious,
- const ImageCategoryInstances<InstanceAnnotation>&
- image_category_ground_truth_instances,
- const ImageCategoryInstances<InstanceAnnotation>&
- image_category_detection_instances) {
- const int num_area_ranges = area_ranges.size();
- const int num_images = image_category_ground_truth_instances.size();
- const int num_categories =
- image_category_ious.size() > 0 ? image_category_ious[0].size() : 0;
- std::vector<uint64_t> detection_sorted_indices;
- std::vector<uint64_t> ground_truth_sorted_indices;
- std::vector<bool> ignores;
- std::vector<ImageEvaluation> results_all(
- num_images * num_area_ranges * num_categories);
- // Store results for each image, category, and area range combination. Results
- // for each IOU threshold are packed into the same ImageEvaluation object
- for (auto i = 0; i < num_images; ++i) {
- for (auto c = 0; c < num_categories; ++c) {
- const std::vector<InstanceAnnotation>& ground_truth_instances =
- image_category_ground_truth_instances[i][c];
- const std::vector<InstanceAnnotation>& detection_instances =
- image_category_detection_instances[i][c];
- SortInstancesByDetectionScore(
- detection_instances, &detection_sorted_indices);
- if ((int)detection_sorted_indices.size() > max_detections) {
- detection_sorted_indices.resize(max_detections);
- }
- for (size_t a = 0; a < area_ranges.size(); ++a) {
- SortInstancesByIgnore(
- area_ranges[a],
- ground_truth_instances,
- &ground_truth_sorted_indices,
- &ignores);
- MatchDetectionsToGroundTruth(
- detection_instances,
- detection_sorted_indices,
- ground_truth_instances,
- ground_truth_sorted_indices,
- ignores,
- image_category_ious[i][c],
- iou_thresholds,
- area_ranges[a],
- &results_all
- [c * num_area_ranges * num_images + a * num_images + i]);
- }
- }
- }
- return results_all;
- }
- // Convert a python list to a vector
- template <typename T>
- std::vector<T> list_to_vec(const py::list& l) {
- std::vector<T> v(py::len(l));
- for (int i = 0; i < (int)py::len(l); ++i) {
- v[i] = l[i].cast<T>();
- }
- return v;
- }
- // Helper function to Accumulate()
- // Considers the evaluation results applicable to a particular category, area
- // range, and max_detections parameter setting, which begin at
- // evaluations[evaluation_index]. Extracts a sorted list of length n of all
- // applicable detection instances concatenated across all images in the dataset,
- // which are represented by the outputs evaluation_indices, detection_scores,
- // image_detection_indices, and detection_sorted_indices--all of which are
- // length n. evaluation_indices[i] stores the applicable index into
- // evaluations[] for instance i, which has detection score detection_score[i],
- // and is the image_detection_indices[i]'th of the list of detections
- // for the image containing i. detection_sorted_indices[] defines a sorted
- // permutation of the 3 other outputs
- int BuildSortedDetectionList(
- const std::vector<ImageEvaluation>& evaluations,
- const int64_t evaluation_index,
- const int64_t num_images,
- const int max_detections,
- std::vector<uint64_t>* evaluation_indices,
- std::vector<double>* detection_scores,
- std::vector<uint64_t>* detection_sorted_indices,
- std::vector<uint64_t>* image_detection_indices) {
- assert(evaluations.size() >= evaluation_index + num_images);
- // Extract a list of object instances of the applicable category, area
- // range, and max detections requirements such that they can be sorted
- image_detection_indices->clear();
- evaluation_indices->clear();
- detection_scores->clear();
- image_detection_indices->reserve(num_images * max_detections);
- evaluation_indices->reserve(num_images * max_detections);
- detection_scores->reserve(num_images * max_detections);
- int num_valid_ground_truth = 0;
- for (auto i = 0; i < num_images; ++i) {
- const ImageEvaluation& evaluation = evaluations[evaluation_index + i];
- for (int d = 0;
- d < (int)evaluation.detection_scores.size() && d < max_detections;
- ++d) { // detected instances
- evaluation_indices->push_back(evaluation_index + i);
- image_detection_indices->push_back(d);
- detection_scores->push_back(evaluation.detection_scores[d]);
- }
- for (auto ground_truth_ignore : evaluation.ground_truth_ignores) {
- if (!ground_truth_ignore) {
- ++num_valid_ground_truth;
- }
- }
- }
- // Sort detections by decreasing score, using stable sort to match
- // python implementation
- detection_sorted_indices->resize(detection_scores->size());
- std::iota(
- detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
- std::stable_sort(
- detection_sorted_indices->begin(),
- detection_sorted_indices->end(),
- [&detection_scores](size_t j1, size_t j2) {
- return (*detection_scores)[j1] > (*detection_scores)[j2];
- });
- return num_valid_ground_truth;
- }
- // Helper function to Accumulate()
- // Compute a precision recall curve given a sorted list of detected instances
- // encoded in evaluations, evaluation_indices, detection_scores,
- // detection_sorted_indices, image_detection_indices (see
- // BuildSortedDetectionList()). Using vectors precisions and recalls
- // and temporary storage, output the results into precisions_out, recalls_out,
- // and scores_out, which are large buffers containing many precion/recall curves
- // for all possible parameter settings, with precisions_out_index and
- // recalls_out_index defining the applicable indices to store results.
- void ComputePrecisionRecallCurve(
- const int64_t precisions_out_index,
- const int64_t precisions_out_stride,
- const int64_t recalls_out_index,
- const std::vector<double>& recall_thresholds,
- const int iou_threshold_index,
- const int num_iou_thresholds,
- const int num_valid_ground_truth,
- const std::vector<ImageEvaluation>& evaluations,
- const std::vector<uint64_t>& evaluation_indices,
- const std::vector<double>& detection_scores,
- const std::vector<uint64_t>& detection_sorted_indices,
- const std::vector<uint64_t>& image_detection_indices,
- std::vector<double>* precisions,
- std::vector<double>* recalls,
- std::vector<double>* precisions_out,
- std::vector<double>* scores_out,
- std::vector<double>* recalls_out) {
- assert(recalls_out->size() > recalls_out_index);
- // Compute precision/recall for each instance in the sorted list of detections
- int64_t true_positives_sum = 0, false_positives_sum = 0;
- precisions->clear();
- recalls->clear();
- precisions->reserve(detection_sorted_indices.size());
- recalls->reserve(detection_sorted_indices.size());
- assert(!evaluations.empty() || detection_sorted_indices.empty());
- for (auto detection_sorted_index : detection_sorted_indices) {
- const ImageEvaluation& evaluation =
- evaluations[evaluation_indices[detection_sorted_index]];
- const auto num_detections =
- evaluation.detection_matches.size() / num_iou_thresholds;
- const auto detection_index = iou_threshold_index * num_detections +
- image_detection_indices[detection_sorted_index];
- assert(evaluation.detection_matches.size() > detection_index);
- assert(evaluation.detection_ignores.size() > detection_index);
- const int64_t detection_match =
- evaluation.detection_matches[detection_index];
- const bool detection_ignores =
- evaluation.detection_ignores[detection_index];
- const auto true_positive = detection_match > 0 && !detection_ignores;
- const auto false_positive = detection_match == 0 && !detection_ignores;
- if (true_positive) {
- ++true_positives_sum;
- }
- if (false_positive) {
- ++false_positives_sum;
- }
- const double recall =
- static_cast<double>(true_positives_sum) / num_valid_ground_truth;
- recalls->push_back(recall);
- const int64_t num_valid_detections =
- true_positives_sum + false_positives_sum;
- const double precision = num_valid_detections > 0
- ? static_cast<double>(true_positives_sum) / num_valid_detections
- : 0.0;
- precisions->push_back(precision);
- }
- (*recalls_out)[recalls_out_index] = !recalls->empty() ? recalls->back() : 0;
- for (int64_t i = static_cast<int64_t>(precisions->size()) - 1; i > 0; --i) {
- if ((*precisions)[i] > (*precisions)[i - 1]) {
- (*precisions)[i - 1] = (*precisions)[i];
- }
- }
- // Sample the per instance precision/recall list at each recall threshold
- for (size_t r = 0; r < recall_thresholds.size(); ++r) {
- // first index in recalls >= recall_thresholds[r]
- std::vector<double>::iterator low = std::lower_bound(
- recalls->begin(), recalls->end(), recall_thresholds[r]);
- size_t precisions_index = low - recalls->begin();
- const auto results_ind = precisions_out_index + r * precisions_out_stride;
- assert(results_ind < precisions_out->size());
- assert(results_ind < scores_out->size());
- if (precisions_index < precisions->size()) {
- (*precisions_out)[results_ind] = (*precisions)[precisions_index];
- (*scores_out)[results_ind] =
- detection_scores[detection_sorted_indices[precisions_index]];
- } else {
- (*precisions_out)[results_ind] = 0;
- (*scores_out)[results_ind] = 0;
- }
- }
- }
- py::dict Accumulate(
- const py::object& params,
- const std::vector<ImageEvaluation>& evaluations) {
- const std::vector<double> recall_thresholds =
- list_to_vec<double>(params.attr("recThrs"));
- const std::vector<int> max_detections =
- list_to_vec<int>(params.attr("maxDets"));
- const int num_iou_thresholds = py::len(params.attr("iouThrs"));
- const int num_recall_thresholds = py::len(params.attr("recThrs"));
- const int num_categories = params.attr("useCats").cast<int>() == 1
- ? py::len(params.attr("catIds"))
- : 1;
- const int num_area_ranges = py::len(params.attr("areaRng"));
- const int num_max_detections = py::len(params.attr("maxDets"));
- const int num_images = py::len(params.attr("imgIds"));
- std::vector<double> precisions_out(
- num_iou_thresholds * num_recall_thresholds * num_categories *
- num_area_ranges * num_max_detections,
- -1);
- std::vector<double> recalls_out(
- num_iou_thresholds * num_categories * num_area_ranges *
- num_max_detections,
- -1);
- std::vector<double> scores_out(
- num_iou_thresholds * num_recall_thresholds * num_categories *
- num_area_ranges * num_max_detections,
- -1);
- // Consider the list of all detected instances in the entire dataset in one
- // large list. evaluation_indices, detection_scores,
- // image_detection_indices, and detection_sorted_indices all have the same
- // length as this list, such that each entry corresponds to one detected
- // instance
- std::vector<uint64_t> evaluation_indices; // indices into evaluations[]
- std::vector<double> detection_scores; // detection scores of each instance
- std::vector<uint64_t> detection_sorted_indices; // sorted indices of all
- // instances in the dataset
- std::vector<uint64_t>
- image_detection_indices; // indices into the list of detected instances in
- // the same image as each instance
- std::vector<double> precisions, recalls;
- for (auto c = 0; c < num_categories; ++c) {
- for (auto a = 0; a < num_area_ranges; ++a) {
- for (auto m = 0; m < num_max_detections; ++m) {
- // The COCO PythonAPI assumes evaluations[] (the return value of
- // COCOeval::EvaluateImages() is one long list storing results for each
- // combination of category, area range, and image id, with categories in
- // the outermost loop and images in the innermost loop.
- const int64_t evaluations_index =
- c * num_area_ranges * num_images + a * num_images;
- int num_valid_ground_truth = BuildSortedDetectionList(
- evaluations,
- evaluations_index,
- num_images,
- max_detections[m],
- &evaluation_indices,
- &detection_scores,
- &detection_sorted_indices,
- &image_detection_indices);
- if (num_valid_ground_truth == 0) {
- continue;
- }
- for (auto t = 0; t < num_iou_thresholds; ++t) {
- // recalls_out is a flattened vectors representing a
- // num_iou_thresholds X num_categories X num_area_ranges X
- // num_max_detections matrix
- const int64_t recalls_out_index =
- t * num_categories * num_area_ranges * num_max_detections +
- c * num_area_ranges * num_max_detections +
- a * num_max_detections + m;
- // precisions_out and scores_out are flattened vectors
- // representing a num_iou_thresholds X num_recall_thresholds X
- // num_categories X num_area_ranges X num_max_detections matrix
- const int64_t precisions_out_stride =
- num_categories * num_area_ranges * num_max_detections;
- const int64_t precisions_out_index = t * num_recall_thresholds *
- num_categories * num_area_ranges * num_max_detections +
- c * num_area_ranges * num_max_detections +
- a * num_max_detections + m;
- ComputePrecisionRecallCurve(
- precisions_out_index,
- precisions_out_stride,
- recalls_out_index,
- recall_thresholds,
- t,
- num_iou_thresholds,
- num_valid_ground_truth,
- evaluations,
- evaluation_indices,
- detection_scores,
- detection_sorted_indices,
- image_detection_indices,
- &precisions,
- &recalls,
- &precisions_out,
- &scores_out,
- &recalls_out);
- }
- }
- }
- }
- time_t rawtime;
- struct tm local_time;
- std::array<char, 200> buffer;
- time(&rawtime);
- #ifdef _WIN32
- localtime_s(&local_time, &rawtime);
- #else
- localtime_r(&rawtime, &local_time);
- #endif
- strftime(
- buffer.data(), 200, "%Y-%m-%d %H:%num_max_detections:%S", &local_time);
- return py::dict(
- "params"_a = params,
- "counts"_a = std::vector<int64_t>({num_iou_thresholds,
- num_recall_thresholds,
- num_categories,
- num_area_ranges,
- num_max_detections}),
- "date"_a = buffer,
- "precision"_a = precisions_out,
- "recall"_a = recalls_out,
- "scores"_a = scores_out);
- }
- } // namespace COCOeval
|