123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import fluid
- from ppdet.core.workspace import register, serializable
- __all__ = ['SOLOv2Loss']
- @register
- @serializable
- class SOLOv2Loss(object):
- """
- SOLOv2Loss
- Args:
- ins_loss_weight (float): Weight of instance loss.
- focal_loss_gamma (float): Gamma parameter for focal loss.
- focal_loss_alpha (float): Alpha parameter for focal loss.
- """
- def __init__(self,
- ins_loss_weight=3.0,
- focal_loss_gamma=2.0,
- focal_loss_alpha=0.25):
- self.ins_loss_weight = ins_loss_weight
- self.focal_loss_gamma = focal_loss_gamma
- self.focal_loss_alpha = focal_loss_alpha
- def _dice_loss(self, input, target):
- input = fluid.layers.reshape(
- input, shape=(fluid.layers.shape(input)[0], -1))
- target = fluid.layers.reshape(
- target, shape=(fluid.layers.shape(target)[0], -1))
- target = fluid.layers.cast(target, 'float32')
- a = fluid.layers.reduce_sum(paddle.multiply(input, target), dim=1)
- b = fluid.layers.reduce_sum(
- paddle.multiply(input, input), dim=1) + 0.001
- c = fluid.layers.reduce_sum(
- paddle.multiply(target, target), dim=1) + 0.001
- d = paddle.divide((2 * a), paddle.add(b, c))
- return 1 - d
- def __call__(self, ins_pred_list, ins_label_list, cate_preds, cate_labels,
- num_ins):
- """
- Get loss of network of SOLOv2.
- Args:
- ins_pred_list (list): Variable list of instance branch output.
- ins_label_list (list): List of instance labels pre batch.
- cate_preds (list): Concat Variable list of categroy branch output.
- cate_labels (list): Concat list of categroy labels pre batch.
- num_ins (int): Number of positive samples in a mini-batch.
- Returns:
- loss_ins (Variable): The instance loss Variable of SOLOv2 network.
- loss_cate (Variable): The category loss Variable of SOLOv2 network.
- """
- # Ues dice_loss to calculate instance loss
- loss_ins = []
- total_weights = fluid.layers.zeros(shape=[1], dtype='float32')
- for input, target in zip(ins_pred_list, ins_label_list):
- weights = fluid.layers.cast(
- fluid.layers.reduce_sum(
- target, dim=[1, 2]) > 0, 'float32')
- input = fluid.layers.sigmoid(input)
- dice_out = fluid.layers.elementwise_mul(
- self._dice_loss(input, target), weights)
- total_weights += fluid.layers.reduce_sum(weights)
- loss_ins.append(dice_out)
- loss_ins = fluid.layers.reduce_sum(fluid.layers.concat(
- loss_ins)) / total_weights
- loss_ins = loss_ins * self.ins_loss_weight
- # Ues sigmoid_focal_loss to calculate category loss
- loss_cate = fluid.layers.sigmoid_focal_loss(
- x=cate_preds,
- label=cate_labels,
- fg_num=num_ins + 1,
- gamma=self.focal_loss_gamma,
- alpha=self.focal_loss_alpha)
- loss_cate = fluid.layers.reduce_sum(loss_cate)
- return loss_ins, loss_cate
|