123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- from paddle import fluid
- from ppdet.core.workspace import register, serializable
- __all__ = ['IouLoss']
- @register
- @serializable
- class IouLoss(object):
- """
- iou loss, see https://arxiv.org/abs/1908.03851
- loss = 1.0 - iou * iou
- Args:
- loss_weight (float): iou loss weight, default is 2.5
- max_height (int): max height of input to support random shape input
- max_width (int): max width of input to support random shape input
- ciou_term (bool): whether to add ciou_term
- loss_square (bool): whether to square the iou term
- """
- def __init__(self,
- loss_weight=2.5,
- max_height=608,
- max_width=608,
- ciou_term=False,
- loss_square=True):
- self._loss_weight = loss_weight
- self._MAX_HI = max_height
- self._MAX_WI = max_width
- self.ciou_term = ciou_term
- self.loss_square = loss_square
- def __call__(self,
- x,
- y,
- w,
- h,
- tx,
- ty,
- tw,
- th,
- anchors,
- downsample_ratio,
- batch_size,
- scale_x_y=1.,
- ioup=None,
- eps=1.e-10):
- '''
- Args:
- x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
- tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h
- anchors ([float]): list of anchors for current output layer
- downsample_ratio (float): the downsample ratio for current output layer
- batch_size (int): training batch size
- eps (float): the decimal to prevent the denominator eqaul zero
- '''
- pred = self._bbox_transform(x, y, w, h, anchors, downsample_ratio,
- batch_size, False, scale_x_y, eps)
- gt = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio,
- batch_size, True, scale_x_y, eps)
- iouk = self._iou(pred, gt, ioup, eps)
- if self.loss_square:
- loss_iou = 1. - iouk * iouk
- else:
- loss_iou = 1. - iouk
- loss_iou = loss_iou * self._loss_weight
- return loss_iou
- def _iou(self, pred, gt, ioup=None, eps=1.e-10):
- x1, y1, x2, y2 = pred
- x1g, y1g, x2g, y2g = gt
- x2 = fluid.layers.elementwise_max(x1, x2)
- y2 = fluid.layers.elementwise_max(y1, y2)
- xkis1 = fluid.layers.elementwise_max(x1, x1g)
- ykis1 = fluid.layers.elementwise_max(y1, y1g)
- xkis2 = fluid.layers.elementwise_min(x2, x2g)
- ykis2 = fluid.layers.elementwise_min(y2, y2g)
- intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
- intsctk = intsctk * fluid.layers.greater_than(
- xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
- unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
- ) - intsctk + eps
- iouk = intsctk / unionk
- if self.ciou_term:
- ciou = self.get_ciou_term(pred, gt, iouk, eps)
- iouk = iouk - ciou
- return iouk
- def get_ciou_term(self, pred, gt, iouk, eps):
- x1, y1, x2, y2 = pred
- x1g, y1g, x2g, y2g = gt
- cx = (x1 + x2) / 2
- cy = (y1 + y2) / 2
- w = (x2 - x1) + fluid.layers.cast((x2 - x1) == 0, 'float32')
- h = (y2 - y1) + fluid.layers.cast((y2 - y1) == 0, 'float32')
- cxg = (x1g + x2g) / 2
- cyg = (y1g + y2g) / 2
- wg = x2g - x1g
- hg = y2g - y1g
- # A or B
- xc1 = fluid.layers.elementwise_min(x1, x1g)
- yc1 = fluid.layers.elementwise_min(y1, y1g)
- xc2 = fluid.layers.elementwise_max(x2, x2g)
- yc2 = fluid.layers.elementwise_max(y2, y2g)
- # DIOU term
- dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
- dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
- diou_term = (dist_intersection + eps) / (dist_union + eps)
- # CIOU term
- ciou_term = 0
- ar_gt = wg / hg
- ar_pred = w / h
- arctan = fluid.layers.atan(ar_gt) - fluid.layers.atan(ar_pred)
- ar_loss = 4. / np.pi / np.pi * arctan * arctan
- alpha = ar_loss / (1 - iouk + ar_loss + eps)
- alpha.stop_gradient = True
- ciou_term = alpha * ar_loss
- return diou_term + ciou_term
- def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio,
- batch_size, is_gt, scale_x_y, eps):
- grid_x = int(self._MAX_WI / downsample_ratio)
- grid_y = int(self._MAX_HI / downsample_ratio)
- an_num = len(anchors) // 2
- shape_fmp = fluid.layers.shape(dcx)
- shape_fmp.stop_gradient = True
- # generate the grid_w x grid_h center of feature map
- idx_i = np.array([[i for i in range(grid_x)]])
- idx_j = np.array([[j for j in range(grid_y)]]).transpose()
- gi_np = np.repeat(idx_i, grid_y, axis=0)
- gi_np = np.reshape(gi_np, newshape=[1, 1, grid_y, grid_x])
- gi_np = np.tile(gi_np, reps=[batch_size, an_num, 1, 1])
- gj_np = np.repeat(idx_j, grid_x, axis=1)
- gj_np = np.reshape(gj_np, newshape=[1, 1, grid_y, grid_x])
- gj_np = np.tile(gj_np, reps=[batch_size, an_num, 1, 1])
- gi_max = self._create_tensor_from_numpy(gi_np.astype(np.float32))
- gi = fluid.layers.crop(x=gi_max, shape=dcx)
- gi.stop_gradient = True
- gj_max = self._create_tensor_from_numpy(gj_np.astype(np.float32))
- gj = fluid.layers.crop(x=gj_max, shape=dcx)
- gj.stop_gradient = True
- grid_x_act = fluid.layers.cast(shape_fmp[3], dtype="float32")
- grid_x_act.stop_gradient = True
- grid_y_act = fluid.layers.cast(shape_fmp[2], dtype="float32")
- grid_y_act.stop_gradient = True
- if is_gt:
- cx = fluid.layers.elementwise_add(dcx, gi) / grid_x_act
- cx.gradient = True
- cy = fluid.layers.elementwise_add(dcy, gj) / grid_y_act
- cy.gradient = True
- else:
- dcx_sig = fluid.layers.sigmoid(dcx)
- dcy_sig = fluid.layers.sigmoid(dcy)
- if (abs(scale_x_y - 1.0) > eps):
- dcx_sig = scale_x_y * dcx_sig - 0.5 * (scale_x_y - 1)
- dcy_sig = scale_x_y * dcy_sig - 0.5 * (scale_x_y - 1)
- cx = fluid.layers.elementwise_add(dcx_sig, gi) / grid_x_act
- cy = fluid.layers.elementwise_add(dcy_sig, gj) / grid_y_act
- anchor_w_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 0]
- anchor_w_np = np.array(anchor_w_)
- anchor_w_np = np.reshape(anchor_w_np, newshape=[1, an_num, 1, 1])
- anchor_w_np = np.tile(anchor_w_np, reps=[batch_size, 1, grid_y, grid_x])
- anchor_w_max = self._create_tensor_from_numpy(
- anchor_w_np.astype(np.float32))
- anchor_w = fluid.layers.crop(x=anchor_w_max, shape=dcx)
- anchor_w.stop_gradient = True
- anchor_h_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 1]
- anchor_h_np = np.array(anchor_h_)
- anchor_h_np = np.reshape(anchor_h_np, newshape=[1, an_num, 1, 1])
- anchor_h_np = np.tile(anchor_h_np, reps=[batch_size, 1, grid_y, grid_x])
- anchor_h_max = self._create_tensor_from_numpy(
- anchor_h_np.astype(np.float32))
- anchor_h = fluid.layers.crop(x=anchor_h_max, shape=dcx)
- anchor_h.stop_gradient = True
- # e^tw e^th
- exp_dw = fluid.layers.exp(dw)
- exp_dh = fluid.layers.exp(dh)
- pw = fluid.layers.elementwise_mul(exp_dw, anchor_w) / \
- (grid_x_act * downsample_ratio)
- ph = fluid.layers.elementwise_mul(exp_dh, anchor_h) / \
- (grid_y_act * downsample_ratio)
- if is_gt:
- exp_dw.stop_gradient = True
- exp_dh.stop_gradient = True
- pw.stop_gradient = True
- ph.stop_gradient = True
- x1 = cx - 0.5 * pw
- y1 = cy - 0.5 * ph
- x2 = cx + 0.5 * pw
- y2 = cy + 0.5 * ph
- if is_gt:
- x1.stop_gradient = True
- y1.stop_gradient = True
- x2.stop_gradient = True
- y2.stop_gradient = True
- return x1, y1, x2, y2
- def _create_tensor_from_numpy(self, numpy_array):
- paddle_array = fluid.layers.create_global_var(
- shape=numpy_array.shape, value=0., dtype=numpy_array.dtype)
- fluid.layers.assign(numpy_array, paddle_array)
- return paddle_array
|