123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- from paddle import fluid
- from ppdet.core.workspace import register, serializable
- __all__ = ['GiouLoss']
- @register
- @serializable
- class GiouLoss(object):
- '''
- Generalized Intersection over Union, see https://arxiv.org/abs/1902.09630
- Args:
- loss_weight (float): diou loss weight, default as 10 in faster-rcnn
- is_cls_agnostic (bool): flag of class-agnostic
- num_classes (int): class num
- do_average (bool): whether to average the loss
- use_class_weight(bool): whether to use class weight
- '''
- __shared__ = ['num_classes']
- def __init__(self,
- loss_weight=10.,
- is_cls_agnostic=False,
- num_classes=81,
- do_average=True,
- use_class_weight=True):
- super(GiouLoss, self).__init__()
- self.loss_weight = loss_weight
- self.is_cls_agnostic = is_cls_agnostic
- self.num_classes = num_classes
- self.do_average = do_average
- self.class_weight = 2 if is_cls_agnostic else num_classes
- self.use_class_weight = use_class_weight
- # deltas: NxMx4
- def bbox_transform(self, deltas, weights):
- wx, wy, ww, wh = weights
- deltas = fluid.layers.reshape(deltas, shape=(0, -1, 4))
- dx = fluid.layers.slice(deltas, axes=[2], starts=[0], ends=[1]) * wx
- dy = fluid.layers.slice(deltas, axes=[2], starts=[1], ends=[2]) * wy
- dw = fluid.layers.slice(deltas, axes=[2], starts=[2], ends=[3]) * ww
- dh = fluid.layers.slice(deltas, axes=[2], starts=[3], ends=[4]) * wh
- dw = fluid.layers.clip(dw, -1.e10, np.log(1000. / 16))
- dh = fluid.layers.clip(dh, -1.e10, np.log(1000. / 16))
- pred_ctr_x = dx
- pred_ctr_y = dy
- pred_w = fluid.layers.exp(dw)
- pred_h = fluid.layers.exp(dh)
- x1 = pred_ctr_x - 0.5 * pred_w
- y1 = pred_ctr_y - 0.5 * pred_h
- x2 = pred_ctr_x + 0.5 * pred_w
- y2 = pred_ctr_y + 0.5 * pred_h
- x1 = fluid.layers.reshape(x1, shape=(-1, ))
- y1 = fluid.layers.reshape(y1, shape=(-1, ))
- x2 = fluid.layers.reshape(x2, shape=(-1, ))
- y2 = fluid.layers.reshape(y2, shape=(-1, ))
- return x1, y1, x2, y2
- def __call__(self,
- x,
- y,
- inside_weight=None,
- outside_weight=None,
- bbox_reg_weight=[0.1, 0.1, 0.2, 0.2],
- loc_reweight=None,
- use_transform=True):
- eps = 1.e-10
- if use_transform:
- x1, y1, x2, y2 = self.bbox_transform(x, bbox_reg_weight)
- x1g, y1g, x2g, y2g = self.bbox_transform(y, bbox_reg_weight)
- else:
- x1, y1, x2, y2 = fluid.layers.split(x, num_or_sections=4, dim=1)
- x1g, y1g, x2g, y2g = fluid.layers.split(y, num_or_sections=4, dim=1)
- x2 = fluid.layers.elementwise_max(x1, x2)
- y2 = fluid.layers.elementwise_max(y1, y2)
- xkis1 = fluid.layers.elementwise_max(x1, x1g)
- ykis1 = fluid.layers.elementwise_max(y1, y1g)
- xkis2 = fluid.layers.elementwise_min(x2, x2g)
- ykis2 = fluid.layers.elementwise_min(y2, y2g)
- xc1 = fluid.layers.elementwise_min(x1, x1g)
- yc1 = fluid.layers.elementwise_min(y1, y1g)
- xc2 = fluid.layers.elementwise_max(x2, x2g)
- yc2 = fluid.layers.elementwise_max(y2, y2g)
- intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
- intsctk = intsctk * fluid.layers.greater_than(
- xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
- unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
- ) - intsctk + eps
- iouk = intsctk / unionk
- area_c = (xc2 - xc1) * (yc2 - yc1) + eps
- miouk = iouk - ((area_c - unionk) / area_c)
- iou_weights = 1
- if inside_weight is not None and outside_weight is not None:
- inside_weight = fluid.layers.reshape(inside_weight, shape=(-1, 4))
- outside_weight = fluid.layers.reshape(outside_weight, shape=(-1, 4))
- inside_weight = fluid.layers.reduce_mean(inside_weight, dim=1)
- outside_weight = fluid.layers.reduce_mean(outside_weight, dim=1)
- iou_weights = inside_weight * outside_weight
- elif outside_weight is not None:
- iou_weights = outside_weight
- if loc_reweight is not None:
- loc_reweight = fluid.layers.reshape(loc_reweight, shape=(-1, 1))
- loc_thresh = 0.9
- giou = 1 - (1 - loc_thresh
- ) * miouk - loc_thresh * miouk * loc_reweight
- else:
- giou = 1 - miouk
- if self.do_average:
- miouk = fluid.layers.reduce_mean(giou * iou_weights)
- else:
- iou_distance = fluid.layers.elementwise_mul(
- giou, iou_weights, axis=0)
- miouk = fluid.layers.reduce_sum(iou_distance)
- if self.use_class_weight:
- miouk = miouk * self.class_weight
- return miouk * self.loss_weight
|