123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- from paddle import fluid
- from ppdet.core.workspace import register, serializable
- from .giou_loss import GiouLoss
- __all__ = ['DiouLoss']
- @register
- @serializable
- class DiouLoss(GiouLoss):
- """
- Distance-IoU Loss, see https://arxiv.org/abs/1911.08287
- Args:
- loss_weight (float): diou loss weight, default as 10 in faster-rcnn
- is_cls_agnostic (bool): flag of class-agnostic
- num_classes (int): class num
- use_complete_iou_loss (bool): whether to use complete iou loss
- """
- def __init__(self,
- loss_weight=10.,
- is_cls_agnostic=False,
- num_classes=81,
- use_complete_iou_loss=True):
- super(DiouLoss, self).__init__(
- loss_weight=loss_weight,
- is_cls_agnostic=is_cls_agnostic,
- num_classes=num_classes)
- self.use_complete_iou_loss = use_complete_iou_loss
- def __call__(self,
- x,
- y,
- inside_weight=None,
- outside_weight=None,
- bbox_reg_weight=[0.1, 0.1, 0.2, 0.2]):
- eps = 1.e-10
- x1, y1, x2, y2 = self.bbox_transform(x, bbox_reg_weight)
- x1g, y1g, x2g, y2g = self.bbox_transform(y, bbox_reg_weight)
- cx = (x1 + x2) / 2
- cy = (y1 + y2) / 2
- w = x2 - x1
- h = y2 - y1
- cxg = (x1g + x2g) / 2
- cyg = (y1g + y2g) / 2
- wg = x2g - x1g
- hg = y2g - y1g
- x2 = fluid.layers.elementwise_max(x1, x2)
- y2 = fluid.layers.elementwise_max(y1, y2)
- # A and B
- xkis1 = fluid.layers.elementwise_max(x1, x1g)
- ykis1 = fluid.layers.elementwise_max(y1, y1g)
- xkis2 = fluid.layers.elementwise_min(x2, x2g)
- ykis2 = fluid.layers.elementwise_min(y2, y2g)
- # A or B
- xc1 = fluid.layers.elementwise_min(x1, x1g)
- yc1 = fluid.layers.elementwise_min(y1, y1g)
- xc2 = fluid.layers.elementwise_max(x2, x2g)
- yc2 = fluid.layers.elementwise_max(y2, y2g)
- intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
- intsctk = intsctk * fluid.layers.greater_than(
- xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
- unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
- ) - intsctk + eps
- iouk = intsctk / unionk
- # DIOU term
- dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
- dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
- diou_term = (dist_intersection + eps) / (dist_union + eps)
- # CIOU term
- ciou_term = 0
- if self.use_complete_iou_loss:
- ar_gt = wg / hg
- ar_pred = w / h
- arctan = fluid.layers.atan(ar_gt) - fluid.layers.atan(ar_pred)
- ar_loss = 4. / np.pi / np.pi * arctan * arctan
- alpha = ar_loss / (1 - iouk + ar_loss + eps)
- alpha.stop_gradient = True
- ciou_term = alpha * ar_loss
- iou_weights = 1
- if inside_weight is not None and outside_weight is not None:
- inside_weight = fluid.layers.reshape(inside_weight, shape=(-1, 4))
- outside_weight = fluid.layers.reshape(outside_weight, shape=(-1, 4))
- inside_weight = fluid.layers.reduce_mean(inside_weight, dim=1)
- outside_weight = fluid.layers.reduce_mean(outside_weight, dim=1)
- iou_weights = inside_weight * outside_weight
- class_weight = 2 if self.is_cls_agnostic else self.num_classes
- diou = fluid.layers.reduce_mean(
- (1 - iouk + ciou_term + diou_term) * iou_weights) * class_weight
- return diou * self.loss_weight
|