1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, serializable
- from .resnet import ResNet
- __all__ = ['ResNeXt']
- @register
- @serializable
- class ResNeXt(ResNet):
- """
- ResNeXt, see https://arxiv.org/abs/1611.05431
- Args:
- depth (int): network depth, should be 50, 101, 152.
- groups (int): group convolution cardinality
- group_width (int): width of each group convolution
- freeze_at (int): freeze the backbone at which stage
- norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
- freeze_norm (bool): freeze normalization layers
- norm_decay (float): weight decay for normalization layer weights
- variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
- feature_maps (list): index of the stages whose feature maps are returned
- dcn_v2_stages (list): index of stages who select deformable conv v2
- """
- def __init__(self,
- depth=50,
- groups=64,
- group_width=4,
- freeze_at=2,
- norm_type='affine_channel',
- freeze_norm=True,
- norm_decay=True,
- variant='a',
- feature_maps=[2, 3, 4, 5],
- dcn_v2_stages=[],
- weight_prefix_name=''):
- assert depth in [50, 101, 152], "depth {} should be 50, 101 or 152"
- super(ResNeXt, self).__init__(depth, freeze_at, norm_type, freeze_norm,
- norm_decay, variant, feature_maps)
- self.depth_cfg = {
- 50: ([3, 4, 6, 3], self.bottleneck),
- 101: ([3, 4, 23, 3], self.bottleneck),
- 152: ([3, 8, 36, 3], self.bottleneck)
- }
- self.stage_filters = [256, 512, 1024, 2048]
- self.groups = groups
- self.group_width = group_width
- self._model_type = 'ResNeXt'
- self.dcn_v2_stages = dcn_v2_stages
- @register
- @serializable
- class ResNeXtC5(ResNeXt):
- __doc__ = ResNeXt.__doc__
- def __init__(self,
- depth=50,
- groups=64,
- group_width=4,
- freeze_at=2,
- norm_type='affine_channel',
- freeze_norm=True,
- norm_decay=True,
- variant='a',
- feature_maps=[5],
- weight_prefix_name=''):
- super(ResNeXtC5, self).__init__(depth, groups, group_width, freeze_at,
- norm_type, freeze_norm, norm_decay,
- variant, feature_maps)
- self.severed_head = True
|