123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from ppdet.core.workspace import register
- __all__ = ['FaceBoxNet']
- @register
- class FaceBoxNet(object):
- """
- FaceBoxes, see https://https://arxiv.org/abs/1708.05234
- Args:
- with_extra_blocks (bool): whether or not extra blocks should be added
- lite_edition (bool): whether or not is FaceBoxes-lite
- """
- def __init__(self, with_extra_blocks=True, lite_edition=False):
- super(FaceBoxNet, self).__init__()
- self.with_extra_blocks = with_extra_blocks
- self.lite_edition = lite_edition
- def __call__(self, input):
- if self.lite_edition:
- return self._simplified_edition(input)
- else:
- return self._original_edition(input)
- def _simplified_edition(self, input):
- conv_1_1 = self._conv_norm_crelu(
- input=input,
- num_filters=8,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv_1_1")
- conv_1_2 = self._conv_norm_crelu(
- input=conv_1_1,
- num_filters=24,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv_1_2")
- pool1 = fluid.layers.pool2d(
- input=conv_1_2,
- pool_size=3,
- pool_padding=1,
- pool_type='avg',
- name="pool_1")
- conv_2_1 = self._conv_norm(
- input=pool1,
- num_filters=48,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv_2_1")
- conv_2_2 = self._conv_norm(
- input=conv_2_1,
- num_filters=64,
- filter_size=1,
- stride=1,
- padding=0,
- act='relu',
- name="conv_2_2")
- conv_inception = conv_2_2
- for i in range(3):
- conv_inception = self._inceptionA(conv_inception, i)
- layers = []
- layers.append(conv_inception)
- conv_3_1 = self._conv_norm(
- input=conv_inception,
- num_filters=128,
- filter_size=1,
- stride=1,
- padding=0,
- act='relu',
- name="conv_3_1")
- conv_3_2 = self._conv_norm(
- input=conv_3_1,
- num_filters=256,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv_3_2")
- layers.append(conv_3_2)
- if not self.with_extra_blocks:
- return layers[-1]
- return layers[-2], layers[-1]
- def _original_edition(self, input):
- conv_1 = self._conv_norm_crelu(
- input=input,
- num_filters=24,
- filter_size=7,
- stride=4,
- padding=3,
- act='relu',
- name="conv_1")
- pool_1 = fluid.layers.pool2d(
- input=conv_1,
- pool_size=3,
- pool_stride=2,
- pool_padding=1,
- pool_type='max',
- name="pool_1")
- conv_2 = self._conv_norm_crelu(
- input=pool_1,
- num_filters=64,
- filter_size=5,
- stride=2,
- padding=2,
- act='relu',
- name="conv_2")
- pool_2 = fluid.layers.pool2d(
- input=conv_1,
- pool_size=3,
- pool_stride=2,
- pool_padding=1,
- pool_type='max',
- name="pool_2")
- conv_inception = pool_2
- for i in range(3):
- conv_inception = self._inceptionA(conv_inception, i)
- layers = []
- layers.append(conv_inception)
- conv_3_1 = self._conv_norm(
- input=conv_inception,
- num_filters=128,
- filter_size=1,
- stride=1,
- padding=0,
- act='relu',
- name="conv_3_1")
- conv_3_2 = self._conv_norm(
- input=conv_3_1,
- num_filters=256,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv_3_2")
- layers.append(conv_3_2)
- conv_4_1 = self._conv_norm(
- input=conv_3_2,
- num_filters=128,
- filter_size=1,
- stride=1,
- padding=0,
- act='relu',
- name="conv_4_1")
- conv_4_2 = self._conv_norm(
- input=conv_4_1,
- num_filters=256,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv_4_2")
- layers.append(conv_4_2)
- if not self.with_extra_blocks:
- return layers[-1]
- return layers[-3], layers[-2], layers[-1]
- def _conv_norm(self,
- input,
- filter_size,
- num_filters,
- stride,
- padding,
- num_groups=1,
- act='relu',
- use_cudnn=True,
- name=None):
- parameter_attr = ParamAttr(
- learning_rate=0.1,
- initializer=fluid.initializer.MSRA(),
- name=name + "_weights")
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- act=None,
- use_cudnn=use_cudnn,
- param_attr=parameter_attr,
- bias_attr=False)
- return fluid.layers.batch_norm(input=conv, act=act)
- def _conv_norm_crelu(self,
- input,
- filter_size,
- num_filters,
- stride,
- padding,
- num_groups=1,
- act='relu',
- use_cudnn=True,
- name=None):
- parameter_attr = ParamAttr(
- learning_rate=0.1,
- initializer=fluid.initializer.MSRA(),
- name=name + "_weights")
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- act=None,
- use_cudnn=use_cudnn,
- param_attr=parameter_attr,
- bias_attr=False)
- conv_a = fluid.layers.batch_norm(input=conv, act=act)
- conv_b = fluid.layers.scale(conv_a, -1)
- concat = fluid.layers.concat([conv_a, conv_b], axis=1)
- return concat
- def _pooling_block(self,
- conv,
- pool_size,
- pool_stride,
- pool_padding=0,
- ceil_mode=True):
- pool = fluid.layers.pool2d(
- input=conv,
- pool_size=pool_size,
- pool_type='max',
- pool_stride=pool_stride,
- pool_padding=pool_padding,
- ceil_mode=ceil_mode)
- return pool
- def _inceptionA(self, data, idx):
- idx = str(idx)
- pool1 = fluid.layers.pool2d(
- input=data,
- pool_size=3,
- pool_padding=1,
- pool_type='avg',
- name='inceptionA_' + idx + '_pool1')
- conv1 = self._conv_norm(
- input=pool1,
- filter_size=1,
- num_filters=32,
- stride=1,
- padding=0,
- act='relu',
- name='inceptionA_' + idx + '_conv1')
- conv2 = self._conv_norm(
- input=data,
- filter_size=1,
- num_filters=32,
- stride=1,
- padding=0,
- act='relu',
- name='inceptionA_' + idx + '_conv2')
- conv3 = self._conv_norm(
- input=data,
- filter_size=1,
- num_filters=24,
- stride=1,
- padding=0,
- act='relu',
- name='inceptionA_' + idx + '_conv3_1')
- conv3 = self._conv_norm(
- input=conv3,
- filter_size=3,
- num_filters=32,
- stride=1,
- padding=1,
- act='relu',
- name='inceptionA_' + idx + '_conv3_2')
- conv4 = self._conv_norm(
- input=data,
- filter_size=1,
- num_filters=24,
- stride=1,
- padding=0,
- act='relu',
- name='inceptionA_' + idx + '_conv4_1')
- conv4 = self._conv_norm(
- input=conv4,
- filter_size=3,
- num_filters=32,
- stride=1,
- padding=1,
- act='relu',
- name='inceptionA_' + idx + '_conv4_2')
- conv4 = self._conv_norm(
- input=conv4,
- filter_size=3,
- num_filters=32,
- stride=1,
- padding=1,
- act='relu',
- name='inceptionA_' + idx + '_conv4_3')
- concat = fluid.layers.concat([conv1, conv2, conv3, conv4], axis=1)
- return concat
|