123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- __all__ = ['BlazeNet']
- @register
- class BlazeNet(object):
- """
- BlazeFace, see https://arxiv.org/abs/1907.05047
- Args:
- blaze_filters (list): number of filter for each blaze block
- double_blaze_filters (list): number of filter for each double_blaze block
- with_extra_blocks (bool): whether or not extra blocks should be added
- lite_edition (bool): whether or not is blazeface-lite
- use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv
- """
- def __init__(
- self,
- blaze_filters=[[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]],
- double_blaze_filters=[[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
- [96, 24, 96, 2], [96, 24, 96], [96, 24, 96]],
- with_extra_blocks=True,
- lite_edition=False,
- use_5x5kernel=True):
- super(BlazeNet, self).__init__()
- self.blaze_filters = blaze_filters
- self.double_blaze_filters = double_blaze_filters
- self.with_extra_blocks = with_extra_blocks
- self.lite_edition = lite_edition
- self.use_5x5kernel = use_5x5kernel
- def __call__(self, input):
- if not self.lite_edition:
- conv1_num_filters = self.blaze_filters[0][0]
- conv = self._conv_norm(
- input=input,
- num_filters=conv1_num_filters,
- filter_size=3,
- stride=2,
- padding=1,
- act='relu',
- name="conv1")
- for k, v in enumerate(self.blaze_filters):
- assert len(v) in [2, 3], \
- "blaze_filters {} not in [2, 3]"
- if len(v) == 2:
- conv = self.BlazeBlock(
- conv,
- v[0],
- v[1],
- use_5x5kernel=self.use_5x5kernel,
- name='blaze_{}'.format(k))
- elif len(v) == 3:
- conv = self.BlazeBlock(
- conv,
- v[0],
- v[1],
- stride=v[2],
- use_5x5kernel=self.use_5x5kernel,
- name='blaze_{}'.format(k))
- layers = []
- for k, v in enumerate(self.double_blaze_filters):
- assert len(v) in [3, 4], \
- "blaze_filters {} not in [3, 4]"
- if len(v) == 3:
- conv = self.BlazeBlock(
- conv,
- v[0],
- v[1],
- double_channels=v[2],
- use_5x5kernel=self.use_5x5kernel,
- name='double_blaze_{}'.format(k))
- elif len(v) == 4:
- layers.append(conv)
- conv = self.BlazeBlock(
- conv,
- v[0],
- v[1],
- double_channels=v[2],
- stride=v[3],
- use_5x5kernel=self.use_5x5kernel,
- name='double_blaze_{}'.format(k))
- layers.append(conv)
- if not self.with_extra_blocks:
- return layers[-1]
- return layers[-2], layers[-1]
- else:
- conv1 = self._conv_norm(
- input=input,
- num_filters=24,
- filter_size=5,
- stride=2,
- padding=2,
- act='relu',
- name="conv1")
- conv2 = self.Blaze_lite(conv1, 24, 24, 1, 'conv2')
- conv3 = self.Blaze_lite(conv2, 24, 28, 1, 'conv3')
- conv4 = self.Blaze_lite(conv3, 28, 32, 2, 'conv4')
- conv5 = self.Blaze_lite(conv4, 32, 36, 1, 'conv5')
- conv6 = self.Blaze_lite(conv5, 36, 42, 1, 'conv6')
- conv7 = self.Blaze_lite(conv6, 42, 48, 2, 'conv7')
- in_ch = 48
- for i in range(5):
- conv7 = self.Blaze_lite(conv7, in_ch, in_ch + 8, 1,
- 'conv{}'.format(8 + i))
- in_ch += 8
- assert in_ch == 88
- conv13 = self.Blaze_lite(conv7, 88, 96, 2, 'conv13')
- for i in range(4):
- conv13 = self.Blaze_lite(conv13, 96, 96, 1,
- 'conv{}'.format(14 + i))
- return conv7, conv13
- def BlazeBlock(self,
- input,
- in_channels,
- out_channels,
- double_channels=None,
- stride=1,
- use_5x5kernel=True,
- name=None):
- assert stride in [1, 2]
- use_pool = not stride == 1
- use_double_block = double_channels is not None
- act = 'relu' if use_double_block else None
- mixed_precision_enabled = mixed_precision_global_state() is not None
- if use_5x5kernel:
- conv_dw = self._conv_norm(
- input=input,
- filter_size=5,
- num_filters=in_channels,
- stride=stride,
- padding=2,
- num_groups=in_channels,
- use_cudnn=mixed_precision_enabled,
- name=name + "1_dw")
- else:
- conv_dw_1 = self._conv_norm(
- input=input,
- filter_size=3,
- num_filters=in_channels,
- stride=1,
- padding=1,
- num_groups=in_channels,
- use_cudnn=mixed_precision_enabled,
- name=name + "1_dw_1")
- conv_dw = self._conv_norm(
- input=conv_dw_1,
- filter_size=3,
- num_filters=in_channels,
- stride=stride,
- padding=1,
- num_groups=in_channels,
- use_cudnn=mixed_precision_enabled,
- name=name + "1_dw_2")
- conv_pw = self._conv_norm(
- input=conv_dw,
- filter_size=1,
- num_filters=out_channels,
- stride=1,
- padding=0,
- act=act,
- name=name + "1_sep")
- if use_double_block:
- if use_5x5kernel:
- conv_dw = self._conv_norm(
- input=conv_pw,
- filter_size=5,
- num_filters=out_channels,
- stride=1,
- padding=2,
- use_cudnn=mixed_precision_enabled,
- name=name + "2_dw")
- else:
- conv_dw_1 = self._conv_norm(
- input=conv_pw,
- filter_size=3,
- num_filters=out_channels,
- stride=1,
- padding=1,
- num_groups=out_channels,
- use_cudnn=mixed_precision_enabled,
- name=name + "2_dw_1")
- conv_dw = self._conv_norm(
- input=conv_dw_1,
- filter_size=3,
- num_filters=out_channels,
- stride=1,
- padding=1,
- num_groups=out_channels,
- use_cudnn=mixed_precision_enabled,
- name=name + "2_dw_2")
- conv_pw = self._conv_norm(
- input=conv_dw,
- filter_size=1,
- num_filters=double_channels,
- stride=1,
- padding=0,
- name=name + "2_sep")
- # shortcut
- if use_pool:
- shortcut_channel = double_channels or out_channels
- shortcut_pool = self._pooling_block(input, stride, stride)
- channel_pad = self._conv_norm(
- input=shortcut_pool,
- filter_size=1,
- num_filters=shortcut_channel,
- stride=1,
- padding=0,
- name="shortcut" + name)
- return fluid.layers.elementwise_add(
- x=channel_pad, y=conv_pw, act='relu')
- return fluid.layers.elementwise_add(x=input, y=conv_pw, act='relu')
- def Blaze_lite(self, input, in_channels, out_channels, stride=1, name=None):
- assert stride in [1, 2]
- use_pool = not stride == 1
- ues_pad = not in_channels == out_channels
- conv_dw = self._conv_norm(
- input=input,
- filter_size=3,
- num_filters=in_channels,
- stride=stride,
- padding=1,
- num_groups=in_channels,
- name=name + "_dw")
- conv_pw = self._conv_norm(
- input=conv_dw,
- filter_size=1,
- num_filters=out_channels,
- stride=1,
- padding=0,
- name=name + "_sep")
- if use_pool:
- shortcut_pool = self._pooling_block(input, stride, stride)
- if ues_pad:
- conv_pad = shortcut_pool if use_pool else input
- channel_pad = self._conv_norm(
- input=conv_pad,
- filter_size=1,
- num_filters=out_channels,
- stride=1,
- padding=0,
- name="shortcut" + name)
- return fluid.layers.elementwise_add(
- x=channel_pad, y=conv_pw, act='relu')
- return fluid.layers.elementwise_add(x=input, y=conv_pw, act='relu')
- def _conv_norm(
- self,
- input,
- filter_size,
- num_filters,
- stride,
- padding,
- num_groups=1,
- act='relu', # None
- use_cudnn=True,
- name=None):
- parameter_attr = ParamAttr(
- learning_rate=0.1,
- initializer=fluid.initializer.MSRA(),
- name=name + "_weights")
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- act=None,
- use_cudnn=use_cudnn,
- param_attr=parameter_attr,
- bias_attr=False)
- return fluid.layers.batch_norm(input=conv, act=act)
- def _pooling_block(self,
- conv,
- pool_size,
- pool_stride,
- pool_padding=0,
- ceil_mode=True):
- pool = fluid.layers.pool2d(
- input=conv,
- pool_size=pool_size,
- pool_type='max',
- pool_stride=pool_stride,
- pool_padding=pool_padding,
- ceil_mode=ceil_mode)
- return pool
|