123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.regularizer import L2Decay
- from paddle.fluid.initializer import Constant, Xavier
- from ppdet.core.workspace import register
- __all__ = ['BiFPN']
- class FusionConv(object):
- def __init__(self, num_chan):
- super(FusionConv, self).__init__()
- self.num_chan = num_chan
- def __call__(self, inputs, name=''):
- x = fluid.layers.swish(inputs)
- # depthwise
- x = fluid.layers.conv2d(
- x,
- self.num_chan,
- filter_size=3,
- padding='SAME',
- groups=self.num_chan,
- param_attr=ParamAttr(
- initializer=Xavier(), name=name + '_dw_w'),
- bias_attr=False)
- # pointwise
- x = fluid.layers.conv2d(
- x,
- self.num_chan,
- filter_size=1,
- param_attr=ParamAttr(
- initializer=Xavier(), name=name + '_pw_w'),
- bias_attr=ParamAttr(
- regularizer=L2Decay(0.), name=name + '_pw_b'))
- # bn + act
- x = fluid.layers.batch_norm(
- x,
- momentum=0.997,
- epsilon=1e-04,
- param_attr=ParamAttr(
- initializer=Constant(1.0),
- regularizer=L2Decay(0.),
- name=name + '_bn_w'),
- bias_attr=ParamAttr(
- regularizer=L2Decay(0.), name=name + '_bn_b'))
- return x
- class BiFPNCell(object):
- def __init__(self, num_chan, levels=5):
- super(BiFPNCell, self).__init__()
- self.levels = levels
- self.num_chan = num_chan
- num_trigates = levels - 2
- num_bigates = levels
- self.trigates = fluid.layers.create_parameter(
- shape=[num_trigates, 3],
- dtype='float32',
- default_initializer=fluid.initializer.Constant(1.))
- self.bigates = fluid.layers.create_parameter(
- shape=[num_bigates, 2],
- dtype='float32',
- default_initializer=fluid.initializer.Constant(1.))
- self.eps = 1e-4
- def __call__(self, inputs, cell_name=''):
- assert len(inputs) == self.levels
- def upsample(feat):
- return fluid.layers.resize_nearest(feat, scale=2.)
- def downsample(feat):
- return fluid.layers.pool2d(
- feat,
- pool_type='max',
- pool_size=3,
- pool_stride=2,
- pool_padding='SAME')
- fuse_conv = FusionConv(self.num_chan)
- # normalize weight
- trigates = fluid.layers.relu(self.trigates)
- bigates = fluid.layers.relu(self.bigates)
- trigates /= fluid.layers.reduce_sum(
- trigates, dim=1, keep_dim=True) + self.eps
- bigates /= fluid.layers.reduce_sum(
- bigates, dim=1, keep_dim=True) + self.eps
- feature_maps = list(inputs) # make a copy
- # top down path
- for l in range(self.levels - 1):
- p = self.levels - l - 2
- w1 = fluid.layers.slice(
- bigates, axes=[0, 1], starts=[l, 0], ends=[l + 1, 1])
- w2 = fluid.layers.slice(
- bigates, axes=[0, 1], starts=[l, 1], ends=[l + 1, 2])
- above = upsample(feature_maps[p + 1])
- feature_maps[p] = fuse_conv(
- w1 * above + w2 * inputs[p],
- name='{}_tb_{}'.format(cell_name, l))
- # bottom up path
- for l in range(1, self.levels):
- p = l
- name = '{}_bt_{}'.format(cell_name, l)
- below = downsample(feature_maps[p - 1])
- if p == self.levels - 1:
- # handle P7
- w1 = fluid.layers.slice(
- bigates, axes=[0, 1], starts=[p, 0], ends=[p + 1, 1])
- w2 = fluid.layers.slice(
- bigates, axes=[0, 1], starts=[p, 1], ends=[p + 1, 2])
- feature_maps[p] = fuse_conv(
- w1 * below + w2 * inputs[p], name=name)
- else:
- w1 = fluid.layers.slice(
- trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
- w2 = fluid.layers.slice(
- trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
- w3 = fluid.layers.slice(
- trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
- feature_maps[p] = fuse_conv(
- w1 * feature_maps[p] + w2 * below + w3 * inputs[p],
- name=name)
- return feature_maps
- @register
- class BiFPN(object):
- """
- Bidirectional Feature Pyramid Network, see https://arxiv.org/abs/1911.09070
- Args:
- num_chan (int): number of feature channels
- repeat (int): number of repeats of the BiFPN module
- level (int): number of FPN levels, default: 5
- """
- def __init__(self, num_chan, repeat=3, levels=5):
- super(BiFPN, self).__init__()
- self.num_chan = num_chan
- self.repeat = repeat
- self.levels = levels
- def __call__(self, inputs):
- feats = []
- # NOTE add two extra levels
- for idx in range(self.levels):
- if idx <= len(inputs):
- if idx == len(inputs):
- feat = inputs[-1]
- else:
- feat = inputs[idx]
- if feat.shape[1] != self.num_chan:
- feat = fluid.layers.conv2d(
- feat,
- self.num_chan,
- filter_size=1,
- padding='SAME',
- param_attr=ParamAttr(initializer=Xavier()),
- bias_attr=ParamAttr(regularizer=L2Decay(0.)))
- feat = fluid.layers.batch_norm(
- feat,
- momentum=0.997,
- epsilon=1e-04,
- param_attr=ParamAttr(
- initializer=Constant(1.0), regularizer=L2Decay(0.)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.)))
- if idx >= len(inputs):
- feat = fluid.layers.pool2d(
- feat,
- pool_type='max',
- pool_size=3,
- pool_stride=2,
- pool_padding='SAME')
- feats.append(feat)
- biFPN = BiFPNCell(self.num_chan, self.levels)
- for r in range(self.repeat):
- feats = biFPN(feats, 'bifpn_{}'.format(r))
- return feats
|