123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- from paddle import fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- __all__ = ['TTFNet']
- @register
- class TTFNet(object):
- """
- TTFNet network, see https://arxiv.org/abs/1909.00700
- Args:
- backbone (object): backbone instance
- ttf_head (object): `TTFHead` instance
- num_classes (int): the number of classes, 80 by default.
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'ttf_head']
- __shared__ = ['num_classes']
- def __init__(self, backbone, ttf_head='TTFHead', num_classes=80):
- super(TTFNet, self).__init__()
- self.backbone = backbone
- self.ttf_head = ttf_head
- self.num_classes = num_classes
- def build(self, feed_vars, mode='train', exclude_nms=False):
- im = feed_vars['image']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- body_feats = self.backbone(im)
- if isinstance(body_feats, OrderedDict):
- body_feat_names = list(body_feats.keys())
- body_feats = [body_feats[name] for name in body_feat_names]
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]
- predict_hm, predict_wh = self.ttf_head.get_output(
- body_feats, 'ttf_head', is_test=mode == 'test')
- if mode == 'train':
- heatmap = feed_vars['ttf_heatmap']
- box_target = feed_vars['ttf_box_target']
- reg_weight = feed_vars['ttf_reg_weight']
- loss = self.ttf_head.get_loss(predict_hm, predict_wh, heatmap,
- box_target, reg_weight)
- total_loss = fluid.layers.sum(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- else:
- results = self.ttf_head.get_bboxes(predict_hm, predict_wh,
- feed_vars['scale_factor'])
- return results
- def _inputs_def(self, image_shape, downsample):
- im_shape = [None] + image_shape
- H, W = im_shape[2:]
- target_h = None if H is None else H // downsample
- target_w = None if W is None else W // downsample
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'scale_factor': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'ttf_heatmap': {'shape': [None, self.num_classes, target_h, target_w], 'dtype': 'float32', 'lod_level': 0},
- 'ttf_box_target': {'shape': [None, 4, target_h, target_w], 'dtype': 'float32', 'lod_level': 0},
- 'ttf_reg_weight': {'shape': [None, 1, target_h, target_w], 'dtype': 'float32', 'lod_level': 0},
- }
- # yapf: enable
- return inputs_def
- def build_inputs(
- self,
- image_shape=[3, None, None],
- fields=[
- 'image', 'ttf_heatmap', 'ttf_box_target', 'ttf_reg_weight'
- ], # for train
- use_dataloader=True,
- iterable=False,
- downsample=4):
- inputs_def = self._inputs_def(image_shape, downsample)
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, mode='train')
- def eval(self, feed_vars):
- return self.build(feed_vars, mode='test')
- def test(self, feed_vars, exclude_nms=False):
- return self.build(feed_vars, mode='test', exclude_nms=exclude_nms)
|