123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import unittest
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- from ppdet.data.source.coco import COCODataSet
- from ppdet.data.reader import Reader
- from ppdet.utils.download import get_path
- from ppdet.utils.download import DATASET_HOME
- from ppdet.data.transform.operators import DecodeImage, ResizeImage, Permute
- from ppdet.data.transform.batch_operators import PadBatch
- from ppdet.utils.check import enable_static_mode
- COCO_VAL_URL = 'http://images.cocodataset.org/zips/val2017.zip'
- COCO_VAL_MD5SUM = '442b8da7639aecaf257c1dceb8ba8c80'
- COCO_ANNO_URL = 'http://images.cocodataset.org/annotations/annotations_trainval2017.zip'
- COCO_ANNO_MD5SUM = 'f4bbac642086de4f52a3fdda2de5fa2c'
- class TestReader(unittest.TestCase):
- @classmethod
- def setUpClass(cls):
- """ setup
- """
- root_path = os.path.join(DATASET_HOME, 'coco')
- _, _ = get_path(COCO_VAL_URL, root_path, COCO_VAL_MD5SUM)
- _, _ = get_path(COCO_ANNO_URL, root_path, COCO_ANNO_MD5SUM)
- cls.anno_path = 'annotations/instances_val2017.json'
- cls.image_dir = 'val2017'
- cls.root_path = root_path
- @classmethod
- def tearDownClass(cls):
- """ tearDownClass """
- pass
- def test_loader(self):
- coco_loader = COCODataSet(
- dataset_dir=self.root_path,
- image_dir=self.image_dir,
- anno_path=self.anno_path,
- sample_num=10)
- sample_trans = [
- DecodeImage(to_rgb=True), ResizeImage(
- target_size=800, max_size=1333, interp=1), Permute(to_bgr=False)
- ]
- batch_trans = [PadBatch(pad_to_stride=32, use_padded_im_info=True), ]
- inputs_def = {
- 'fields': [
- 'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd',
- 'gt_mask'
- ],
- }
- data_loader = Reader(
- coco_loader,
- sample_transforms=sample_trans,
- batch_transforms=batch_trans,
- batch_size=2,
- shuffle=True,
- drop_empty=True,
- inputs_def=inputs_def)()
- for i in range(2):
- for samples in data_loader:
- for sample in samples:
- im_shape = sample[0].shape
- self.assertEqual(im_shape[0], 3)
- self.assertEqual(im_shape[1] % 32, 0)
- self.assertEqual(im_shape[2] % 32, 0)
- im_info_shape = sample[1].shape
- self.assertEqual(im_info_shape[-1], 3)
- im_id_shape = sample[2].shape
- self.assertEqual(im_id_shape[-1], 1)
- gt_bbox_shape = sample[3].shape
- self.assertEqual(gt_bbox_shape[-1], 4)
- gt_class_shape = sample[4].shape
- self.assertEqual(gt_class_shape[-1], 1)
- self.assertEqual(gt_class_shape[0], gt_bbox_shape[0])
- is_crowd_shape = sample[5].shape
- self.assertEqual(is_crowd_shape[-1], 1)
- self.assertEqual(is_crowd_shape[0], gt_bbox_shape[0])
- mask = sample[6]
- self.assertEqual(len(mask), gt_bbox_shape[0])
- self.assertEqual(mask[0][0].shape[-1], 2)
- data_loader.reset()
- def test_loader_multi_threads(self):
- coco_loader = COCODataSet(
- dataset_dir=self.root_path,
- image_dir=self.image_dir,
- anno_path=self.anno_path,
- sample_num=10)
- sample_trans = [
- DecodeImage(to_rgb=True), ResizeImage(
- target_size=800, max_size=1333, interp=1), Permute(to_bgr=False)
- ]
- batch_trans = [PadBatch(pad_to_stride=32, use_padded_im_info=True), ]
- inputs_def = {
- 'fields': [
- 'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd',
- 'gt_mask'
- ],
- }
- data_loader = Reader(
- coco_loader,
- sample_transforms=sample_trans,
- batch_transforms=batch_trans,
- batch_size=2,
- shuffle=True,
- drop_empty=True,
- worker_num=2,
- use_process=False,
- bufsize=8,
- inputs_def=inputs_def)()
- for i in range(2):
- for samples in data_loader:
- for sample in samples:
- im_shape = sample[0].shape
- self.assertEqual(im_shape[0], 3)
- self.assertEqual(im_shape[1] % 32, 0)
- self.assertEqual(im_shape[2] % 32, 0)
- im_info_shape = sample[1].shape
- self.assertEqual(im_info_shape[-1], 3)
- im_id_shape = sample[2].shape
- self.assertEqual(im_id_shape[-1], 1)
- gt_bbox_shape = sample[3].shape
- self.assertEqual(gt_bbox_shape[-1], 4)
- gt_class_shape = sample[4].shape
- self.assertEqual(gt_class_shape[-1], 1)
- self.assertEqual(gt_class_shape[0], gt_bbox_shape[0])
- is_crowd_shape = sample[5].shape
- self.assertEqual(is_crowd_shape[-1], 1)
- self.assertEqual(is_crowd_shape[0], gt_bbox_shape[0])
- mask = sample[6]
- self.assertEqual(len(mask), gt_bbox_shape[0])
- self.assertEqual(mask[0][0].shape[-1], 2)
- data_loader.reset()
- if __name__ == '__main__':
- enable_static_mode()
- unittest.main()
|