123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // The code is based on:
- // https://github.com/RangiLyu/nanodet/blob/main/demo_mnn/nanodet_mnn.cpp
- #include "include/picodet_postprocess.h"
- namespace PaddleDetection {
- float fast_exp(float x) {
- union {
- uint32_t i;
- float f;
- } v{};
- v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
- return v.f;
- }
- template <typename _Tp>
- int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
- const _Tp alpha = *std::max_element(src, src + length);
- _Tp denominator{0};
- for (int i = 0; i < length; ++i) {
- dst[i] = fast_exp(src[i] - alpha);
- denominator += dst[i];
- }
- for (int i = 0; i < length; ++i) {
- dst[i] /= denominator;
- }
- return 0;
- }
- // PicoDet decode
- PaddleDetection::ObjectResult
- disPred2Bbox(const float *&dfl_det, int label, float score, int x, int y,
- int stride, std::vector<float> im_shape, int reg_max) {
- float ct_x = (x + 0.5) * stride;
- float ct_y = (y + 0.5) * stride;
- std::vector<float> dis_pred;
- dis_pred.resize(4);
- for (int i = 0; i < 4; i++) {
- float dis = 0;
- float *dis_after_sm = new float[reg_max + 1];
- activation_function_softmax(dfl_det + i * (reg_max + 1), dis_after_sm,
- reg_max + 1);
- for (int j = 0; j < reg_max + 1; j++) {
- dis += j * dis_after_sm[j];
- }
- dis *= stride;
- dis_pred[i] = dis;
- delete[] dis_after_sm;
- }
- int xmin = (int)(std::max)(ct_x - dis_pred[0], .0f);
- int ymin = (int)(std::max)(ct_y - dis_pred[1], .0f);
- int xmax = (int)(std::min)(ct_x + dis_pred[2], (float)im_shape[0]);
- int ymax = (int)(std::min)(ct_y + dis_pred[3], (float)im_shape[1]);
- PaddleDetection::ObjectResult result_item;
- result_item.rect = {xmin, ymin, xmax, ymax};
- result_item.class_id = label;
- result_item.confidence = score;
- return result_item;
- }
- void PicoDetPostProcess(std::vector<PaddleDetection::ObjectResult> *results,
- std::vector<const float *> outs,
- std::vector<int> fpn_stride,
- std::vector<float> im_shape,
- std::vector<float> scale_factor, float score_threshold,
- float nms_threshold, int num_class, int reg_max) {
- std::vector<std::vector<PaddleDetection::ObjectResult>> bbox_results;
- bbox_results.resize(num_class);
- int in_h = im_shape[0], in_w = im_shape[1];
- for (int i = 0; i < fpn_stride.size(); ++i) {
- int feature_h = std::ceil((float)in_h / fpn_stride[i]);
- int feature_w = std::ceil((float)in_w / fpn_stride[i]);
- for (int idx = 0; idx < feature_h * feature_w; idx++) {
- const float *scores = outs[i] + (idx * num_class);
- int row = idx / feature_w;
- int col = idx % feature_w;
- float score = 0;
- int cur_label = 0;
- for (int label = 0; label < num_class; label++) {
- if (scores[label] > score) {
- score = scores[label];
- cur_label = label;
- }
- }
- if (score > score_threshold) {
- const float *bbox_pred =
- outs[i + fpn_stride.size()] + (idx * 4 * (reg_max + 1));
- bbox_results[cur_label].push_back(
- disPred2Bbox(bbox_pred, cur_label, score, col, row, fpn_stride[i],
- im_shape, reg_max));
- }
- }
- }
- for (int i = 0; i < (int)bbox_results.size(); i++) {
- PaddleDetection::nms(bbox_results[i], nms_threshold);
- for (auto box : bbox_results[i]) {
- box.rect[0] = box.rect[0] / scale_factor[1];
- box.rect[2] = box.rect[2] / scale_factor[1];
- box.rect[1] = box.rect[1] / scale_factor[0];
- box.rect[3] = box.rect[3] / scale_factor[0];
- results->push_back(box);
- }
- }
- }
- } // namespace PaddleDetection
|