123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import glob
- import os
- import os.path as osp
- import cv2
- import argparse
- import numpy as np
- import random
- # The object category indicates the type of annotated object,
- # (i.e., ignored regions(0), pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10),others(11))
- # Extract single class or multi class
- isExtractMultiClass = False
- # These sequences are excluded because there are too few pedestrians
- exclude_seq = [
- "uav0000117_02622_v", "uav0000182_00000_v", "uav0000268_05773_v",
- "uav0000305_00000_v"
- ]
- def mkdir_if_missing(d):
- if not osp.exists(d):
- os.makedirs(d)
- def genGtFile(seqPath, outPath, classes=[]):
- id_idx = 0
- old_idx = -1
- with open(seqPath, 'r') as singleSeqFile:
- motLine = []
- allLines = singleSeqFile.readlines()
- for line in allLines:
- line = line.replace('\n', '')
- line = line.split(',')
- # exclude occlusion!='2'
- if line[-1] != '2' and line[7] in classes:
- if old_idx != int(line[1]):
- id_idx += 1
- old_idx = int(line[1])
- newLine = line[0:6]
- newLine[1] = str(id_idx)
- newLine.append('1')
- if (len(classes) > 1 and isExtractMultiClass):
- class_index = str(classes.index(line[7]) + 1)
- newLine.append(class_index)
- else:
- newLine.append('1') # use permenant class '1'
- newLine.append('1')
- motLine.append(newLine)
- mkdir_if_missing(outPath)
- gtFilePath = osp.join(outPath, 'gt.txt')
- with open(gtFilePath, 'w') as gtFile:
- motLine = list(map(lambda x: str.join(',', x), motLine))
- motLineStr = str.join('\n', motLine)
- gtFile.write(motLineStr)
- def genSeqInfo(img1Path, seqName):
- imgPaths = glob.glob(img1Path + '/*.jpg')
- seqLength = len(imgPaths)
- if seqLength > 0:
- image1 = cv2.imread(imgPaths[0])
- imgHeight = image1.shape[0]
- imgWidth = image1.shape[1]
- else:
- imgHeight = 0
- imgWidth = 0
- seqInfoStr = f'''[Sequence]\nname={seqName}\nimDir=img1\nframeRate=30\nseqLength={seqLength}\nimWidth={imgWidth}\nimHeight={imgHeight}\nimExt=.jpg'''
- seqInfoPath = img1Path.replace('/img1', '')
- with open(seqInfoPath + '/seqinfo.ini', 'w') as seqFile:
- seqFile.write(seqInfoStr)
- def copyImg(img1Path, gtTxtPath, outputFileName):
- with open(gtTxtPath, 'r') as gtFile:
- allLines = gtFile.readlines()
- imgList = []
- for line in allLines:
- imgIdx = int(line.split(',')[0])
- if imgIdx not in imgList:
- imgList.append(imgIdx)
- seqName = gtTxtPath.replace('./{}/'.format(outputFileName),
- '').replace('/gt/gt.txt', '')
- sourceImgPath = osp.join('./sequences', seqName,
- '{:07d}.jpg'.format(imgIdx))
- os.system(f'cp {sourceImgPath} {img1Path}')
- def genMotLabels(datasetPath, outputFileName, classes=['2']):
- mkdir_if_missing(osp.join(datasetPath, outputFileName))
- annotationsPath = osp.join(datasetPath, 'annotations')
- annotationsList = glob.glob(osp.join(annotationsPath, '*.txt'))
- for annotationPath in annotationsList:
- seqName = annotationPath.split('/')[-1].replace('.txt', '')
- if seqName in exclude_seq:
- continue
- mkdir_if_missing(osp.join(datasetPath, outputFileName, seqName, 'gt'))
- mkdir_if_missing(osp.join(datasetPath, outputFileName, seqName, 'img1'))
- genGtFile(annotationPath,
- osp.join(datasetPath, outputFileName, seqName, 'gt'), classes)
- img1Path = osp.join(datasetPath, outputFileName, seqName, 'img1')
- gtTxtPath = osp.join(datasetPath, outputFileName, seqName, 'gt/gt.txt')
- copyImg(img1Path, gtTxtPath, outputFileName)
- genSeqInfo(img1Path, seqName)
- def deleteFileWhichImg1IsEmpty(mot16Path, dataType='train'):
- path = mot16Path
- data_images_train = osp.join(path, 'images', f'{dataType}')
- data_images_train_seqs = glob.glob(data_images_train + '/*')
- if (len(data_images_train_seqs) == 0):
- print('dataset is empty!')
- for data_images_train_seq in data_images_train_seqs:
- data_images_train_seq_img1 = osp.join(data_images_train_seq, 'img1')
- if len(glob.glob(data_images_train_seq_img1 + '/*.jpg')) == 0:
- print(f"os.system(rm -rf {data_images_train_seq})")
- os.system(f'rm -rf {data_images_train_seq}')
- def formatMot16Path(dataPath, pathType='train'):
- train_path = osp.join(dataPath, 'images', pathType)
- mkdir_if_missing(train_path)
- os.system(f'mv {dataPath}/* {train_path}')
- def VisualGt(dataPath, phase='train'):
- seqList = sorted(glob.glob(osp.join(dataPath, 'images', phase) + '/*'))
- seqIndex = random.randint(0, len(seqList) - 1)
- seqPath = seqList[seqIndex]
- gt_path = osp.join(seqPath, 'gt', 'gt.txt')
- img_list_path = sorted(glob.glob(osp.join(seqPath, 'img1', '*.jpg')))
- imgIndex = random.randint(0, len(img_list_path))
- img_Path = img_list_path[imgIndex]
- frame_value = int(img_Path.split('/')[-1].replace('.jpg', ''))
- gt_value = np.loadtxt(gt_path, dtype=int, delimiter=',')
- gt_value = gt_value[gt_value[:, 0] == frame_value]
- get_list = gt_value.tolist()
- img = cv2.imread(img_Path)
- colors = [[255, 0, 0], [255, 255, 0], [255, 0, 255], [0, 255, 0],
- [0, 255, 255], [0, 0, 255]]
- for seq, _id, pl, pt, w, h, _, bbox_class, _ in get_list:
- cv2.putText(img,
- str(bbox_class), (pl, pt), cv2.FONT_HERSHEY_PLAIN, 2,
- colors[bbox_class - 1])
- cv2.rectangle(
- img, (pl, pt), (pl + w, pt + h),
- colors[bbox_class - 1],
- thickness=2)
- cv2.imwrite('testGt.jpg', img)
- def VisualDataset(datasetPath, phase='train', seqName='', frameId=1):
- trainPath = osp.join(datasetPath, 'labels_with_ids', phase)
- seq1Paths = osp.join(trainPath, seqName)
- seq_img1_path = osp.join(seq1Paths, 'img1')
- label_with_idPath = osp.join(seq_img1_path, '%07d' % frameId) + '.txt'
- image_path = label_with_idPath.replace('labels_with_ids', 'images').replace(
- '.txt', '.jpg')
- seqInfoPath = str.join('/', image_path.split('/')[:-2])
- seqInfoPath = seqInfoPath + '/seqinfo.ini'
- seq_info = open(seqInfoPath).read()
- width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
- '\nimHeight')])
- height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
- '\nimExt')])
- with open(label_with_idPath, 'r') as label:
- allLines = label.readlines()
- images = cv2.imread(image_path)
- for line in allLines:
- line = line.split(' ')
- line = list(map(lambda x: float(x), line))
- c1, c2, w, h = line[2:6]
- x1 = c1 - w / 2
- x2 = c2 - h / 2
- x3 = c1 + w / 2
- x4 = c2 + h / 2
- cv2.rectangle(
- images, (int(x1 * width), int(x2 * height)),
- (int(x3 * width), int(x4 * height)), (255, 0, 0),
- thickness=2)
- cv2.imwrite('test.jpg', images)
- def gen_image_list(dataPath, datType):
- inputPath = f'{dataPath}/images/{datType}'
- pathList = glob.glob(inputPath + '/*')
- pathList = sorted(pathList)
- allImageList = []
- for pathSingle in pathList:
- imgList = sorted(glob.glob(osp.join(pathSingle, 'img1', '*.jpg')))
- for imgPath in imgList:
- allImageList.append(imgPath)
- with open(f'{dataPath}.{datType}', 'w') as image_list_file:
- allImageListStr = str.join('\n', allImageList)
- image_list_file.write(allImageListStr)
- def gen_labels_mot(MOT_data, phase='train'):
- seq_root = './{}/images/{}'.format(MOT_data, phase)
- label_root = './{}/labels_with_ids/{}'.format(MOT_data, phase)
- mkdir_if_missing(label_root)
- seqs = [s for s in os.listdir(seq_root)]
- print('seqs => ', seqs)
- tid_curr = 0
- tid_last = -1
- for seq in seqs:
- seq_info = open(osp.join(seq_root, seq, 'seqinfo.ini')).read()
- seq_width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
- '\nimHeight')])
- seq_height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
- '\nimExt')])
- gt_txt = osp.join(seq_root, seq, 'gt', 'gt.txt')
- gt = np.loadtxt(gt_txt, dtype=np.float64, delimiter=',')
- seq_label_root = osp.join(label_root, seq, 'img1')
- mkdir_if_missing(seq_label_root)
- for fid, tid, x, y, w, h, mark, label, _ in gt:
- # if mark == 0 or not label == 1:
- # continue
- fid = int(fid)
- tid = int(tid)
- if not tid == tid_last:
- tid_curr += 1
- tid_last = tid
- x += w / 2
- y += h / 2
- label_fpath = osp.join(seq_label_root, '{:07d}.txt'.format(fid))
- label_str = '0 {:d} {:.6f} {:.6f} {:.6f} {:.6f}\n'.format(
- tid_curr, x / seq_width, y / seq_height, w / seq_width,
- h / seq_height)
- with open(label_fpath, 'a') as f:
- f.write(label_str)
- def parse_arguments():
- parser = argparse.ArgumentParser(description='input method')
- parser.add_argument("--transMot", type=bool, default=False)
- parser.add_argument("--genMot", type=bool, default=False)
- parser.add_argument("--formatMotPath", type=bool, default=False)
- parser.add_argument("--deleteEmpty", type=bool, default=False)
- parser.add_argument("--genLabelsMot", type=bool, default=False)
- parser.add_argument("--genImageList", type=bool, default=False)
- parser.add_argument("--visualImg", type=bool, default=False)
- parser.add_argument("--visualGt", type=bool, default=False)
- parser.add_argument("--data_name", type=str, default='visdrone_pedestrian')
- parser.add_argument("--phase", type=str, default='train')
- parser.add_argument(
- "--classes", type=str, default='1,2') # pedestrian and people
- return parser.parse_args()
- if __name__ == "__main__":
- args = parse_arguments()
- classes = args.classes.split(',')
- datasetPath = './'
- dataName = args.data_name
- phase = args.phase
- if args.transMot:
- genMotLabels(datasetPath, dataName, classes)
- formatMot16Path(dataName, pathType=phase)
- mot16Path = f'./{dataName}'
- deleteFileWhichImg1IsEmpty(mot16Path, dataType=phase)
- gen_labels_mot(dataName, phase=phase)
- gen_image_list(dataName, phase)
- if args.genMot:
- genMotLabels(datasetPath, dataName, classes)
- if args.formatMotPath:
- formatMot16Path(dataName, pathType=phase)
- if args.deleteEmpty:
- mot16Path = f'./{dataName}'
- deleteFileWhichImg1IsEmpty(mot16Path, dataType=phase)
- if args.genLabelsMot:
- gen_labels_mot(dataName, phase=phase)
- if args.genImageList:
- gen_image_list(dataName, phase)
- if args.visualGt:
- VisualGt(f'./{dataName}', phase)
- if args.visualImg:
- seqName = 'uav0000137_00458_v'
- frameId = 43
- VisualDataset(
- f'./{dataName}', phase=phase, seqName=seqName, frameId=frameId)
|