MaochengHu 576cda45b8 first commit | 2 lat temu | |
---|---|---|
.. | ||
_base_ | 2 lat temu | |
detector | 2 lat temu | |
README.md | 2 lat temu | |
README_cn.md | 2 lat temu | |
bytetrack_ppyoloe.yml | 2 lat temu | |
bytetrack_ppyoloe_pplcnet.yml | 2 lat temu | |
bytetrack_yolov3.yml | 2 lat temu | |
bytetrack_yolox.yml | 2 lat temu | |
bytetrack_yolox_ht21.yml | 2 lat temu |
简体中文 | English
ByteTrack(ByteTrack: Multi-Object Tracking by Associating Every Detection Box) 通过关联每个检测框来跟踪,而不仅是关联高分的检测框。对于低分数检测框会利用它们与轨迹片段的相似性来恢复真实对象并过滤掉背景检测框。此处提供了几个常用检测器的配置作为参考。由于训练数据集、输入尺度、训练epoch数、NMS阈值设置等的不同均会导致模型精度和性能的差异,请自行根据需求进行适配。
检测训练数据集 | 检测器 | 输入尺度 | ReID | 检测mAP | MOTA | IDF1 | FPS | 配置文件 |
---|---|---|---|---|---|---|---|---|
MOT-17 half train | YOLOv3 | 608x608 | - | 42.7 | 49.5 | 54.8 | - | 配置文件 |
MOT-17 half train | PPYOLOe | 640x640 | - | 52.9 | 50.4 | 59.7 | - | 配置文件 |
MOT-17 half train | PPYOLOe | 640x640 | PPLCNet | 52.9 | 51.7 | 58.8 | - | 配置文件 |
mix_det | YOLOX-x | 800x1440 | - | 61.9 | 77.3 | 71.6 | - | 配置文件 |
注意:
det_weights
和reid_weights
,运行验证的命令即可自动下载。dataset/mot/
文件夹下。dataset/mot/
目录下。为了验证精度可以都用MOT17-half val数据集去评估。通过如下命令一键式启动训练和评估
python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp --fleet
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml
注意:
tools/eval.py
, 评估跟踪使用的是tools/eval_mot.py
。CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_yolov3.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_ppyoloe.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_ppyoloe_pplcnet.yml --scaled=True
注意:
--scaled
表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE YOLOv3则为False,如果使用通用检测模型则为True, 默认值是False。{output_dir}/mot_results/
中,里面每个视频序列对应一个txt,每个txt文件每行信息是frame,id,x1,y1,w,h,score,-1,-1,-1
, 此外{output_dir}
可通过--output_dir
设置。使用单个GPU通过如下命令预测一个视频,并保存为视频
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/bytetrack/bytetrack_ppyoloe.yml --video_file={your video name}.mp4 --scaled=True --save_videos
注意:
apt-get update && apt-get install -y ffmpeg
。--scaled
表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE的YOLOv3则为False,如果使用通用检测模型则为True。Step 1:导出检测模型
# 导出PPYOLe行人检测模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/ppyoloe_crn_l_36e_640x640_mot17half.pdparams
Step 2:导出ReID模型(可选步骤,默认不需要)
# 导出PPLCNet ReID模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/reid/deepsort_pplcnet.yml -o reid_weights=https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pplcnet.pdparams
python deploy/pptracking/python/mot_sde_infer.py --model_dir=output_inference/ppyoloe_crn_l_36e_640x640_mot17half/ --tracker_config=deploy/pptracking/python/tracker_config.yml --video_file={your video name}.mp4 --device=GPU --scaled=True --save_mot_txts
注意:
--save_mot_txts
(对每个视频保存一个txt)或--save_mot_txt_per_img
(对每张图片保存一个txt)表示保存跟踪结果的txt文件,或--save_images
表示保存跟踪结果可视化图片。frame,id,x1,y1,w,h,score,-1,-1,-1
。--scaled
表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE的YOLOv3则为False,如果使用通用检测模型则为True。@article{zhang2021bytetrack,
title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
journal={arXiv preprint arXiv:2110.06864},
year={2021}
}