# -*- coding: utf-8 -*- # @Time : 2022/6/24 15:18 # @Author : MaochengHu # @Email : wojiaohumaocheng@gmail.com # @File : config.py # @Project : person_monitor import os import argparse # -------------------------- 常规配置参数 ------------------------------- # # 项目根路径 pro_root = "/data2/humaocheng/person_monitor" # 依赖根路径 dependence_root = os.path.join(pro_root, "dependence") # 模型根路径 model_root = os.path.join(pro_root, "dev/src/algorithms/save_models") # 测试文件(可以是本地视频文件也可以是在线视频流地址) # input_source = "rtsp://admin:sunwin2019@192.168.20.240:554/h265/ch1/main/av_stream" input_source = "/data2/humaocheng/person_monitor/dev/test/demo.mp4" # 使用GPU索引 cuda_index = 0 item_max_size = 60 # 保留多少帧进行动作识别 # 保存结果 save_result = True # 是否将识别出来的结果进行保存 use_keypoint = True # 是否通过关键点进行行为识别,如果不用关键点则直接基于视频裁剪进行行为识别 # ---------------------- 人物目标检测配置参数 --------------------------------# # 模型加载参数 object_detection_model_config = dict( pt_weights=os.path.join(model_root, "object_detection_model", "person_detection.engine"), # 目标检测的权重地址 data=os.path.join(model_root, "object_detection_model", "person.yaml"), # 目标检测对应的类别文件 imgsz=(640, 640), # 表示图片大小,不通的yolo模型需要对应不同的输入大小(不宜修改) device=cuda_index, # GPU索引 confthre=0.001, # 做跟踪所以置信度需要很小, 保证丢失目标能补上 nmsthre=0.7, # nms阈值大小 max_det=20 # 设置最大检测人数 ) person_attr = ["play_phone", "", "sleep", "work"] # ----------------------- 人物属性检测模型配置参数 ---------------------------- # # 模型加载参数 person_attribute_model_config = dict( pt_weights=os.path.join(model_root, "object_detection_model", "attribute.pt"), # 目标检测的权重地址 data=os.path.join(model_root, "object_detection_model", "person.yaml"), # 目标检测对应的类别文件 imgsz=(640, 640), # 表示图片大小,不通的yolo模型需要对应不同的输入大小(不宜修改) device=cuda_index, # GPU索引 confthre=0.6, # 目标置信度 nmsthre=0.7, # nms阈值大小 ) # 人物状态类别 person_class_list = ["play_phone", "call_phone", "sleep", "work"] # 安全帽佩戴状态类别 helmet_class_list = ["no_helmet", "helmet"] # ----------------------- 人体跟踪模型配置参数 ---------------------------- # tracker_max_id = 100 # 建议大于等于max_det的5倍及以上 tracker_model_config = dict( track_thresh=0.5, # 跟踪人体置信度 track_buffer=30, # 如果人体框丢失多少帧则不进行追回 match_thresh=0.8, # 相似度匹配阈值多少算匹配上 mot20=False, # 是否使用mot20 计算 tracker_max_id=tracker_max_id, # 最多跟踪多少人, 如果超过该人数, 则重新计数 ) # 生成跟踪参数解析器 tracker_parser = argparse.ArgumentParser() for k, v in tracker_model_config.items(): tracker_parser.add_argument("--{}".format(k), default=v) tracker_args = tracker_parser.parse_args() # tracker_frame_rate = 30 # 跟踪视频的fps的值 min_box_area = 10 # 小于多少的边不进行识别 output_side_size = 640 # 如果不进行关键点识别,直接基于视频识别,则需要进行padding裁剪对应的输出图片大小 tracker_line_size = 90 # 设置人体行为轨迹跟踪线长度 # ----------------------- 关键点模型配置参数 ---------------------------- # pose_name = "tiny_pose" pose_model_platform = "paddle" # 目前仅仅支持paddle(飞浆) 以及 mmpose 平台 pose_trt = True # 是否使用tensorrt加速 if pose_model_platform == "paddle": if pose_trt: run_mode = "trt_fp32" else: run_mode = "paddle" keypoint_model_config = dict(model_dir=os.path.join(model_root, "pose_model/tinypose_256x192"), device="gpu:{}".format(cuda_index), trt_calib_mode=True, run_mode=run_mode, enable_mkldnn=True, batch_size=8, threshold=0.5 ) elif pose_model_platform == "mmpose": if pose_trt: keypoint_model_config = dict(model_config_path=os.path.join(model_root, "mspn50_coco_256x192_topdown_heatmap/mspn50_coco_256x192.py "), deploy_config_path=os.path.join(model_root, "mspn50_coco_256x192_topdown_heatmap/pose-detection_tensorrt_static-256x192.py"), device="cuda:{}".format(cuda_index), checkpoint=[os.path.join(model_root, "mspn50_coco_256x192_topdown_heatmap/end2end.engine")] ) else: keypoint_model_config = dict(model_config_path=os.path.join(model_root, "mspn50_coco_256x192_topdown_heatmap/mspn50_coco_256x192.py"), device="cuda:{}".format(cuda_index), checkpoint=os.path.join(model_root, "mspn50_coco_256x192_topdown_heatmap/mspn50_coco_256x192-8fbfb5d0_20201123.pth") ) # ------------------------- 行为识别模型配置参数 ------------------------ # if use_keypoint: action_config_root = os.path.join(model_root, "action_model/stgcn_80e_ntu60_xsub_keypoint") save_kp_npy = False # 是否需要保留关键点姿态采集, 采集骨骼关键点, 并画出对应的骨骼关键点视频 dataset_format = 'TopDownCocoDataset' class_name = "fall" # run, jump .etc # 需要采集的骨骼关键点对应的动作类别 npy_output_dir = os.path.join(pro_root, "test_npy/{}".format(class_name)) if save_kp_npy: if not os.path.exists(npy_output_dir): os.makedirs(npy_output_dir) action_model_config = dict( model_config_path=os.path.join(action_config_root, "stgcn_80e_ntu60_xsub_keypoint_customer.py"), checkpoint=os.path.join(action_config_root, "best_top1_acc_epoch_26.pth"), action_label=os.path.join(pro_root, "dev/configs/customer_action.txt"), device="cuda:{}".format(cuda_index), item_max_size=item_max_size, # 保留多少帧进行动作识别 save_kp_npy=save_kp_npy, dataset_format=dataset_format, npy_output_dir=npy_output_dir ) # ----------------------- 人群聚集检测配置参数 ---------------------------- # eps = 100 # 人员聚类距离 min_samples = 2 # 簇最少人数 # ----------------------- 人员入侵配置参数 ------------------------------- # limited_area = (800, 200, 1000, 600) # 对应限制区域的画面坐标 # -------------------------- 显示结果配置参数 ---------------------------- # show_result = True # 是否需要展示效果 show_config = dict(kps_threshold=0.3, draw_point_num=30) # 关键点的展示阈值以及需要画跟踪点的长度