# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Logging utils """ import os import warnings import pkg_resources as pkg import torch from torch.utils.tensorboard import SummaryWriter from utils.general import colorstr, cv2, emojis from utils.loggers.wandb.wandb_utils import WandbLogger from utils.plots import plot_images, plot_results from utils.torch_utils import de_parallel LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases RANK = int(os.getenv('RANK', -1)) try: import wandb assert hasattr(wandb, '__version__') # verify package import not local dir if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}: try: wandb_login_success = wandb.login(timeout=30) except wandb.errors.UsageError: # known non-TTY terminal issue wandb_login_success = False if not wandb_login_success: wandb = None except (ImportError, AssertionError): wandb = None class Loggers(): # YOLOv5 Loggers class def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): self.save_dir = save_dir self.weights = weights self.opt = opt self.hyp = hyp self.logger = logger # for printing results to console self.include = include self.keys = [ 'train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95'] for k in LOGGERS: setattr(self, k, None) # init empty logger dictionary self.csv = True # always log to csv # Message if not wandb: prefix = colorstr('Weights & Biases: ') s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)" self.logger.info(emojis(s)) # TensorBoard s = self.save_dir if 'tb' in self.include and not self.opt.evolve: prefix = colorstr('TensorBoard: ') self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") self.tb = SummaryWriter(str(s)) # W&B if wandb and 'wandb' in self.include: wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://') run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None self.opt.hyp = self.hyp # add hyperparameters self.wandb = WandbLogger(self.opt, run_id) # temp warn. because nested artifacts not supported after 0.12.10 if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'): self.logger.warning( "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected." ) else: self.wandb = None def on_train_start(self): # Callback runs on train start pass def on_pretrain_routine_end(self): # Callback runs on pre-train routine end paths = self.save_dir.glob('*labels*.jpg') # training labels if self.wandb: self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) def on_train_batch_end(self, ni, model, imgs, targets, paths, plots): # Callback runs on train batch end if plots: if ni == 0: if not self.opt.sync_bn: # --sync known issue https://github.com/ultralytics/yolov5/issues/3754 with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress jit trace warning self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) if ni < 3: f = self.save_dir / f'train_batch{ni}.jpg' # filename plot_images(imgs, targets, paths, f) if self.wandb and ni == 10: files = sorted(self.save_dir.glob('train*.jpg')) self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) def on_train_epoch_end(self, epoch): # Callback runs on train epoch end if self.wandb: self.wandb.current_epoch = epoch + 1 def on_val_image_end(self, pred, predn, path, names, im): # Callback runs on val image end if self.wandb: self.wandb.val_one_image(pred, predn, path, names, im) def on_val_end(self): # Callback runs on val end if self.wandb: files = sorted(self.save_dir.glob('val*.jpg')) self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): # Callback runs at the end of each fit (train+val) epoch x = dict(zip(self.keys, vals)) if self.csv: file = self.save_dir / 'results.csv' n = len(x) + 1 # number of cols s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header with open(file, 'a') as f: f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') if self.tb: for k, v in x.items(): self.tb.add_scalar(k, v, epoch) if self.wandb: if best_fitness == fi: best_results = [epoch] + vals[3:7] for i, name in enumerate(self.best_keys): self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary self.wandb.log(x) self.wandb.end_epoch(best_result=best_fitness == fi) def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): # Callback runs on save_models save event if self.wandb: if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) def on_train_end(self, last, best, plots, epoch, results): # Callback runs on training end if plots: plot_results(file=self.save_dir / 'results.csv') # save results.png files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") if self.tb: for f in files: self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') if self.wandb: self.wandb.log(dict(zip(self.keys[3:10], results))) self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model if not self.opt.evolve: wandb.log_artifact(str(best if best.exists() else last), type='save_models', name=f'run_{self.wandb.wandb_run.id}_model', aliases=['latest', 'best', 'stripped']) self.wandb.finish_run() def on_params_update(self, params): # Update hyperparams or configs of the experiment # params: A dict containing {param: value} pairs if self.wandb: self.wandb.wandb_run.config.update(params, allow_val_change=True)