# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from paddle import fluid from ppdet.core.workspace import register, serializable from .giou_loss import GiouLoss __all__ = ['DiouLoss'] @register @serializable class DiouLoss(GiouLoss): """ Distance-IoU Loss, see https://arxiv.org/abs/1911.08287 Args: loss_weight (float): diou loss weight, default as 10 in faster-rcnn is_cls_agnostic (bool): flag of class-agnostic num_classes (int): class num use_complete_iou_loss (bool): whether to use complete iou loss """ def __init__(self, loss_weight=10., is_cls_agnostic=False, num_classes=81, use_complete_iou_loss=True): super(DiouLoss, self).__init__( loss_weight=loss_weight, is_cls_agnostic=is_cls_agnostic, num_classes=num_classes) self.use_complete_iou_loss = use_complete_iou_loss def __call__(self, x, y, inside_weight=None, outside_weight=None, bbox_reg_weight=[0.1, 0.1, 0.2, 0.2]): eps = 1.e-10 x1, y1, x2, y2 = self.bbox_transform(x, bbox_reg_weight) x1g, y1g, x2g, y2g = self.bbox_transform(y, bbox_reg_weight) cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 cxg = (x1g + x2g) / 2 cyg = (y1g + y2g) / 2 wg = x2g - x1g hg = y2g - y1g x2 = fluid.layers.elementwise_max(x1, x2) y2 = fluid.layers.elementwise_max(y1, y2) # A and B xkis1 = fluid.layers.elementwise_max(x1, x1g) ykis1 = fluid.layers.elementwise_max(y1, y1g) xkis2 = fluid.layers.elementwise_min(x2, x2g) ykis2 = fluid.layers.elementwise_min(y2, y2g) # A or B xc1 = fluid.layers.elementwise_min(x1, x1g) yc1 = fluid.layers.elementwise_min(y1, y1g) xc2 = fluid.layers.elementwise_max(x2, x2g) yc2 = fluid.layers.elementwise_max(y2, y2g) intsctk = (xkis2 - xkis1) * (ykis2 - ykis1) intsctk = intsctk * fluid.layers.greater_than( xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1) unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g ) - intsctk + eps iouk = intsctk / unionk # DIOU term dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg) dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1) diou_term = (dist_intersection + eps) / (dist_union + eps) # CIOU term ciou_term = 0 if self.use_complete_iou_loss: ar_gt = wg / hg ar_pred = w / h arctan = fluid.layers.atan(ar_gt) - fluid.layers.atan(ar_pred) ar_loss = 4. / np.pi / np.pi * arctan * arctan alpha = ar_loss / (1 - iouk + ar_loss + eps) alpha.stop_gradient = True ciou_term = alpha * ar_loss iou_weights = 1 if inside_weight is not None and outside_weight is not None: inside_weight = fluid.layers.reshape(inside_weight, shape=(-1, 4)) outside_weight = fluid.layers.reshape(outside_weight, shape=(-1, 4)) inside_weight = fluid.layers.reduce_mean(inside_weight, dim=1) outside_weight = fluid.layers.reduce_mean(outside_weight, dim=1) iou_weights = inside_weight * outside_weight class_weight = 2 if self.is_cls_agnostic else self.num_classes diou = fluid.layers.reduce_mean( (1 - iouk + ciou_term + diou_term) * iou_weights) * class_weight return diou * self.loss_weight