# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import math import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import Normal __all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"] class ConvBNLayer(nn.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, dilation=1, groups=1, act=None, lr_mult=1.0, name=None, data_format="NCHW"): super(ConvBNLayer, self).__init__() conv_stdv = filter_size * filter_size * num_filters self._conv = nn.Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, dilation=dilation, groups=groups, weight_attr=ParamAttr( learning_rate=lr_mult, initializer=Normal(0, math.sqrt(2. / conv_stdv))), bias_attr=False, data_format=data_format) self._batch_norm = nn.BatchNorm2D(num_filters) self.act = act def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) if self.act: y = getattr(F, self.act)(y) return y class BottleneckBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, shortcut=True, name=None, lr_mult=1.0, dilation=1, data_format="NCHW"): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, dilation=dilation, act="relu", lr_mult=lr_mult, name=name + "_branch2a", data_format=data_format) self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, dilation=dilation, stride=stride, act="relu", lr_mult=lr_mult, name=name + "_branch2b", data_format=data_format) self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, dilation=dilation, act=None, lr_mult=lr_mult, name=name + "_branch2c", data_format=data_format) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, dilation=dilation, stride=stride, lr_mult=lr_mult, name=name + "_branch1", data_format=data_format) self.shortcut = shortcut self._num_channels_out = num_filters * 4 def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv2) y = F.relu(y) return y class BasicBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, shortcut=True, name=None, data_format="NCHW"): super(BasicBlock, self).__init__() self.stride = stride self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=stride, act="relu", name=name + "_branch2a", data_format=data_format) self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b", data_format=data_format) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, stride=stride, name=name + "_branch1", data_format=data_format) self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv1) y = F.relu(y) return y class ResNet(nn.Layer): def __init__(self, layers=50, lr_mult=1.0, last_conv_stride=2, last_conv_dilation=1): super(ResNet, self).__init__() self.layers = layers self.data_format = "NCHW" self.input_image_channel = 3 supported_layers = [18, 34, 50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_channels = [64, 256, 512, 1024] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] self.conv = ConvBNLayer( num_channels=self.input_image_channel, num_filters=64, filter_size=7, stride=2, act="relu", lr_mult=lr_mult, name="conv1", data_format=self.data_format) self.pool2d_max = nn.MaxPool2D( kernel_size=3, stride=2, padding=1, data_format=self.data_format) self.block_list = [] if layers >= 50: for block in range(len(depth)): shortcut = False for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) if i != 0 or block == 0: stride = 1 elif block == len(depth) - 1: stride = last_conv_stride else: stride = 2 bottleneck_block = self.add_sublayer( conv_name, BottleneckBlock( num_channels=num_channels[block] if i == 0 else num_filters[block] * 4, num_filters=num_filters[block], stride=stride, shortcut=shortcut, name=conv_name, lr_mult=lr_mult, dilation=last_conv_dilation if block == len(depth) - 1 else 1, data_format=self.data_format)) self.block_list.append(bottleneck_block) shortcut = True else: for block in range(len(depth)): shortcut = False for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) basic_block = self.add_sublayer( conv_name, BasicBlock( num_channels=num_channels[block] if i == 0 else num_filters[block], num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, name=conv_name, data_format=self.data_format)) self.block_list.append(basic_block) shortcut = True def forward(self, inputs): y = self.conv(inputs) y = self.pool2d_max(y) for block in self.block_list: y = block(y) return y def ResNet18(**args): model = ResNet(layers=18, **args) return model def ResNet34(**args): model = ResNet(layers=34, **args) return model def ResNet50(pretrained=None, **args): model = ResNet(layers=50, **args) if pretrained is not None: if not (os.path.isdir(pretrained) or os.path.exists(pretrained + '.pdparams')): raise ValueError("Model pretrain path {} does not " "exists.".format(pretrained)) param_state_dict = paddle.load(pretrained + '.pdparams') model.set_dict(param_state_dict) return model def ResNet101(pretrained=None, **args): model = ResNet(layers=101, **args) if pretrained is not None: if not (os.path.isdir(pretrained) or os.path.exists(pretrained + '.pdparams')): raise ValueError("Model pretrain path {} does not " "exists.".format(pretrained)) param_state_dict = paddle.load(pretrained + '.pdparams') model.set_dict(param_state_dict) return model def ResNet152(**args): model = ResNet(layers=152, **args) return model