# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling import ops __all__ = ['FCOSLoss'] def flatten_tensor(inputs, channel_first=False): """ Flatten a Tensor Args: inputs (Tensor): 4-D Tensor with shape [N, C, H, W] or [N, H, W, C] channel_first (bool): If true the dimension order of Tensor is [N, C, H, W], otherwise is [N, H, W, C] Return: output_channel_last (Tensor): The flattened Tensor in channel_last style """ if channel_first: input_channel_last = paddle.transpose(inputs, perm=[0, 2, 3, 1]) else: input_channel_last = inputs output_channel_last = paddle.flatten( input_channel_last, start_axis=0, stop_axis=2) return output_channel_last @register class FCOSLoss(nn.Layer): """ FCOSLoss Args: loss_alpha (float): alpha in focal loss loss_gamma (float): gamma in focal loss iou_loss_type (str): location loss type, IoU/GIoU/LINEAR_IoU reg_weights (float): weight for location loss """ def __init__(self, loss_alpha=0.25, loss_gamma=2.0, iou_loss_type="giou", reg_weights=1.0): super(FCOSLoss, self).__init__() self.loss_alpha = loss_alpha self.loss_gamma = loss_gamma self.iou_loss_type = iou_loss_type self.reg_weights = reg_weights def __iou_loss(self, pred, targets, positive_mask, weights=None): """ Calculate the loss for location prediction Args: pred (Tensor): bounding boxes prediction targets (Tensor): targets for positive samples positive_mask (Tensor): mask of positive samples weights (Tensor): weights for each positive samples Return: loss (Tensor): location loss """ plw = pred[:, 0] * positive_mask pth = pred[:, 1] * positive_mask prw = pred[:, 2] * positive_mask pbh = pred[:, 3] * positive_mask tlw = targets[:, 0] * positive_mask tth = targets[:, 1] * positive_mask trw = targets[:, 2] * positive_mask tbh = targets[:, 3] * positive_mask tlw.stop_gradient = True trw.stop_gradient = True tth.stop_gradient = True tbh.stop_gradient = True ilw = paddle.minimum(plw, tlw) irw = paddle.minimum(prw, trw) ith = paddle.minimum(pth, tth) ibh = paddle.minimum(pbh, tbh) clw = paddle.maximum(plw, tlw) crw = paddle.maximum(prw, trw) cth = paddle.maximum(pth, tth) cbh = paddle.maximum(pbh, tbh) area_predict = (plw + prw) * (pth + pbh) area_target = (tlw + trw) * (tth + tbh) area_inter = (ilw + irw) * (ith + ibh) ious = (area_inter + 1.0) / ( area_predict + area_target - area_inter + 1.0) ious = ious * positive_mask if self.iou_loss_type.lower() == "linear_iou": loss = 1.0 - ious elif self.iou_loss_type.lower() == "giou": area_uniou = area_predict + area_target - area_inter area_circum = (clw + crw) * (cth + cbh) + 1e-7 giou = ious - (area_circum - area_uniou) / area_circum loss = 1.0 - giou elif self.iou_loss_type.lower() == "iou": loss = 0.0 - paddle.log(ious) else: raise KeyError if weights is not None: loss = loss * weights return loss def forward(self, cls_logits, bboxes_reg, centerness, tag_labels, tag_bboxes, tag_center): """ Calculate the loss for classification, location and centerness Args: cls_logits (list): list of Tensor, which is predicted score for all anchor points with shape [N, M, C] bboxes_reg (list): list of Tensor, which is predicted offsets for all anchor points with shape [N, M, 4] centerness (list): list of Tensor, which is predicted centerness for all anchor points with shape [N, M, 1] tag_labels (list): list of Tensor, which is category targets for each anchor point tag_bboxes (list): list of Tensor, which is bounding boxes targets for positive samples tag_center (list): list of Tensor, which is centerness targets for positive samples Return: loss (dict): loss composed by classification loss, bounding box """ cls_logits_flatten_list = [] bboxes_reg_flatten_list = [] centerness_flatten_list = [] tag_labels_flatten_list = [] tag_bboxes_flatten_list = [] tag_center_flatten_list = [] num_lvl = len(cls_logits) for lvl in range(num_lvl): cls_logits_flatten_list.append( flatten_tensor(cls_logits[lvl], True)) bboxes_reg_flatten_list.append( flatten_tensor(bboxes_reg[lvl], True)) centerness_flatten_list.append( flatten_tensor(centerness[lvl], True)) tag_labels_flatten_list.append( flatten_tensor(tag_labels[lvl], False)) tag_bboxes_flatten_list.append( flatten_tensor(tag_bboxes[lvl], False)) tag_center_flatten_list.append( flatten_tensor(tag_center[lvl], False)) cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0) bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0) centerness_flatten = paddle.concat(centerness_flatten_list, axis=0) tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0) tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0) tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0) tag_labels_flatten.stop_gradient = True tag_bboxes_flatten.stop_gradient = True tag_center_flatten.stop_gradient = True mask_positive_bool = tag_labels_flatten > 0 mask_positive_bool.stop_gradient = True mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32") mask_positive_float.stop_gradient = True num_positive_fp32 = paddle.sum(mask_positive_float) num_positive_fp32.stop_gradient = True num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32") num_positive_int32 = num_positive_int32 * 0 + 1 num_positive_int32.stop_gradient = True normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float) normalize_sum.stop_gradient = True # 1. cls_logits: sigmoid_focal_loss # expand onehot labels num_classes = cls_logits_flatten.shape[-1] tag_labels_flatten = paddle.squeeze(tag_labels_flatten, axis=-1) tag_labels_flatten_bin = F.one_hot( tag_labels_flatten, num_classes=1 + num_classes) tag_labels_flatten_bin = tag_labels_flatten_bin[:, 1:] # sigmoid_focal_loss cls_loss = F.sigmoid_focal_loss( cls_logits_flatten, tag_labels_flatten_bin) / num_positive_fp32 # 2. bboxes_reg: giou_loss mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1) tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1) reg_loss = self.__iou_loss( bboxes_reg_flatten, tag_bboxes_flatten, mask_positive_float, weights=tag_center_flatten) reg_loss = reg_loss * mask_positive_float / normalize_sum # 3. centerness: sigmoid_cross_entropy_with_logits_loss centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1) ctn_loss = ops.sigmoid_cross_entropy_with_logits(centerness_flatten, tag_center_flatten) ctn_loss = ctn_loss * mask_positive_float / num_positive_fp32 loss_all = { "loss_centerness": paddle.sum(ctn_loss), "loss_cls": paddle.sum(cls_loss), "loss_box": paddle.sum(reg_loss) } return loss_all